Background: All-Food-Sequencing (AFS) is an untargeted metagenomic sequencing method that allows for the detection and quantification of food ingredients including animals, plants, and microbiota. While this approach avoids some of the shortcomings of targeted PCR-based methods, it requires the comparison of sequence reads to large collections of reference genomes. The steadily increasing amount of available reference genomes establishes the need for efficient big data approaches. Results: We introduce an alignment-free k-mer based method for detection and quantification of species composition in food and other complex biological matters. It is orders-of-magnitude faster than our previous alignment-based AFS pipeline. In comparison to the established tools CLARK, Kraken2, and Kraken2+Bracken it is superior in terms of false-positive rate and quantification accuracy. Furthermore, the usage of an efficient database partitioning scheme allows for the processing of massive collections of reference genomes with reduced memory requirements on a workstation (AFS-MetaCache) or on a Spark-based compute cluster (MetaCacheSpark). Conclusions: We present a fast yet accurate screening method for whole genome shotgun sequencing-based biosurveillance applications such as food testing. By relying on a big data approach it can scale efficiently towards large-scale collections of complex eukaryotic and bacterial reference genomes. AFS-MetaCache and MetaCacheSpark are suitable tools for broad-scale metagenomic screening applications. They are available at https://muellan.github.io/ metacache/afs.html (C++ version for a workstation) and https://github.com/jmabuin/MetaCacheSpark (Spark version for big data clusters).
BackgroundMetagenomic sequencing studies are becoming increasingly popular with prominent examples including the sequencing of human microbiomes and diverse environments. A fundamental computational problem in this context is read classification; i.e. the assignment of each read to a taxonomic label. Due to the large number of reads produced by modern high-throughput sequencing technologies and the rapidly increasing number of available reference genomes software tools for fast and accurate metagenomic read classification are urgently needed.ResultsWe present cuCLARK, a read-level classifier for CUDA-enabled GPUs, based on the fast and accurate classification of metagenomic sequences using reduced k-mers (CLARK) method. Using the processing power of a single Titan X GPU, cuCLARK can reach classification speeds of up to 50 million reads per minute. Corresponding speedups for species- (genus-)level classification range between 3.2 and 6.6 (3.7 and 6.4) compared to multi-threaded CLARK executed on a 16-core Xeon CPU workstation.ConclusioncuCLARK can perform metagenomic read classification at superior speeds on CUDA-enabled GPUs. It is free software licensed under GPL and can be downloaded at https://github.com/funatiq/cuclark free of charge.
The cost of DNA sequencing has dropped exponentially over the past decade, making genomic data accessible to a growing number of scientists. In bioinformatics, localization of short DNA sequences (reads) within large genomic sequences is commonly facilitated by constructing index data structures which allow for efficient querying of substrings. Recent metagenomic classification pipelines annotate reads with taxonomic labels by analyzing their 𝑘-mer histograms with respect to a reference genome database. CPU-based index construction is often performed in a preprocessing phase due to the relatively high cost of building irregular data structures such as hash maps. However, the rapidly growing amount of available reference genomes establishes the need for index construction and querying at interactive speeds. In this paper, we introduce MetaCache-GPU -an ultra-fast metagenomic short read classifier specifically tailored to fit the characteristics of CUDA-enabled accelerators. Our approach employs a novel hash table variant featuring efficient minhash fingerprinting of reads for locality-sensitive hashing and their rapid insertion using warp-aggregated operations. Our performance evaluation shows that MetaCache-GPU is able to build large reference databases in a matter of seconds, enabling instantaneous operability, while popular CPU-based tools such as Kraken2 require over an hour for index construction on the same data. In the context of an ever-growing number of reference genomes, MetaCache-GPU is the first metagenomic classifier that makes analysis pipelines with on-demand composition of largescale reference genome sets practical. The source code is publicly available at https://github.com/muellan/metacache.
Hash tables are ubiquitous. Properties such as an amortized constant time complexity for insertion and querying as well as a compact memory layout make them versatile associative data structures with manifold applications. The rapidly growing amount of data emerging in many fields motivated the need for accelerated hash tables designed for modern parallel architectures. In this work, we exploit the fast memory interface of modern GPUs together with a parallel hashing scheme tailored to improve global memory access patterns, to design WarpCore -a versatile library of hash table data structures. Unique device-sided operations allow for building high performance data processing pipelines entirely on the GPU. Our implementation achieves up to 1.6 billion inserts and up to 4.3 billion retrievals per second on a single GV100 GPU thereby outperforming the stateof-the-art solutions cuDPP, SlabHash, and NVIDIA RAPIDS cuDF. This performance advantage becomes even more pronounced for high load factors of over 90%. To overcome the memory limitation of a single GPU, we scale our approach over a dense NVLink topology which gives us close-to-optimal weak scaling on DGX servers. We further show how WarpCore can be used for accelerating a real world bioinformatics application (metagenomic classification) with speedups of over two orders-of-magnitude against state-of-theart CPU-based solutions. We plan to make our library publicly available upon acceptance of the paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.