on behalf of the CRIC Study InvestigatorsRationale & Objective: Identification of novel risk factors for chronic kidney disease (CKD) progression may inform mechanistic investigations and improve identification of high-risk subgroups. The current study aimed to characterize CKD progression across levels of numerous risk factors and identify independent risk factors for CKD progression among those with and without diabetes.Study Design: The Chronic Renal Insufficiency Cohort (CRIC) Study is a prospective cohort study of adults with CKD conducted at 7 US clinical centers.Setting & Participants: Participants (N = 3,379) had up to 12.3 years of follow-up; 47% had diabetes.Predictors: 30 risk factors for CKD progression across sociodemographic, behavioral, clinical, and biochemical domains at baseline.Outcomes: Study outcomes were estimated glomerular filtration rate (eGFR) slope and the composite of halving of eGFR or initiation of kidney replacement therapy. Analytical Approach:Stepwise selection of independent risk factors was performed stratified by diabetes status using linear mixed-effects and Cox proportional hazards models.Results: Among those without and with diabetes, respectively, mean eGFR slope was −1.4 ± 3.3 and −2.7 ± 4.7 mL/min/1.73 m 2 per year. Among participants with diabetes, multivariable-adjusted hazard of the composite outcome was approximately 2-fold or greater with higher levels of the inflammatory chemokine CXCL12, the cardiac marker N-terminal pro-B-type natriuretic peptide (NT-proBNP), and the kidney injury marker urinary neutrophil gelatinaseassociated lipocalin (NGAL). Among those without diabetes, low serum bicarbonate and higher high-sensitivity troponin T, NT-proBNP, and urinary NGAL levels were all significantly associated with a 1.5-fold or greater rate of the composite outcome. Limitations:The observational study design precludes causal inference.Conclusions: Strong associations for cardiac markers, plasma CXCL12, and urinary NGAL are comparable to that of systolic blood pressure ≥ 140 mm Hg, a well-established risk factor for CKD progression. This warrants further investigation into the potential mechanisms that these markers indicate and opportunities to use them to improve risk stratification.
Enterotoxin-based adjuvants including cholera toxin and heat-labile toxin (LT) are powerful manipulators of mucosal immunity; however, past clinical trials identified unacceptable neurological toxicity when LT or mutant AB5 adjuvant proteins were added to intranasal vaccines. Here, we examined the isolated enzymatic A1 domain of LT (LTA1) for intranasal safety and efficacy in combination with influenza (flu) vaccination. LTA1-treated mice exhibited no neurotoxicity, as measured by olfactory system testing and H&E staining of nasal tissue in contrast with cholera toxin. In vaccination studies, intranasal LTA1 enhanced immune responses to inactivated virus antigen and subsequent protection against H1N1 flu challenge in mice (8-week or 24-months). In addition, lung H1N1 viral titers post-challenge correlated to serum antibody responses; however, enhanced protection was also observed in μMT mice lacking B-cells while activation and recruitment of CD4 T-cells into the lung was apparent. Thus, we report that LTA1 protein is a novel, safe and effective enterotoxin adjuvant that improves protection of an intranasal flu vaccination by a mechanism that does not appear to require B-cells.
Enterotoxigenic Escherichia coli (ETEC) is a major cause of infectious diarrhea in children, travelers, and deployed military personnel. As such, development of a vaccine would be advantageous for public health. One strategy is to use subunits of colonization factors combined with antigen/adjuvant toxoids as an ETEC vaccine. Here, we investigated the intradermal (i.d.) or sublingual (s.l.) delivery of CFA/I fimbrial antigens, including CfaEB and a CfaE-heat-labile toxin B subunit (LTB) chimera admixed with double mutant heat-labile toxin (LT) LT-R192G/L211A (dmLT). In addition, we compared dmLT with other LT proteins to better understand the generation of adjuvanted fimbrial and toxoid immunity as well as the influence on any local skin reactogenicity. We demonstrate that immunization with dmLT admixed with CfaEB induces robust serum and fecal antibody responses to CFA/I fimbriae and LT but that i.d. formulations are not optimal for s.l. delivery. Improved s.l. vaccination outcomes were observed when higher doses of dmLT (1 to 5 μg) were admixed with CfaEB or, even better, when a CfaE-LTB chimera antigen was used instead. Serum anti-CFA/I total antibodies, detected by enzyme-linked immunosorbent assay, were the best predictor of functional antibodies, based on the inhibition of red blood cell agglutination by ETEC. Immunization with other LT proteins or formulations with altered B-subunit binding during i.d. immunization (e.g., by addition of 5% lactose, LTA1, or LT-G33D) minimally altered the development of antibody responses and cytokine recall responses but reduced skin reactogenicity at the injection site. These results reveal how formulations and delivery parameters shape the adaptive immune responses to a toxoid and fimbria-derived subunit vaccine against ETEC.
This cohort study uses data from the Atherosclerosis Risk in Communities (ARIC) Study to investigate whether the increase in metabolic syndrome severity is more pronounced in women than men and whether the sex difference varies by race.
Enterotoxin-based proteins are powerful manipulators of mucosal immunity. The A1 domain of heat-labile enterotoxin from E. coli, or LTA1, is a newer adjuvant from this family under investigation for intranasal vaccines. Although LTA1 has been examined in mouse vaccination studies, its ability to directly stimulate immune cells compared to related adjuvant proteins has not been well explored. Here, we perform the first rigorous examination of LTA1's effect on antigen presenting cells (APC) using a human monocyte cell line THP-1. To better understand LTA1's stimulatory effects, we compared it to dmLT, or LT-R192G/L211A, a related AB 5 adjuvant in clinical trials for oral or parenteral vaccines. LTA1 and dmLT both activated APCs to upregulate MHC-II (HLA-DR), CD86, cytokine secretion (e.g., IL-1β) and inflammasome activation. The effect of LTA1 on surface marker changes (e.g., MHC-II) was highly dose-dependent whereas dmLT exhibited high MHC-II expression regardless of dose. In contrast, cytokine secretion profiles were similar and dose-dependent after both LTA1 and dmLT treatment. Cellular activation by LTA1 was independent of ganglioside binding, as pretreatment with purified GM1 blocked the effect of dmLT but not LTA1. Unexpectedly, while activation of the inflammasome and cytokine secretion by LTA1 or dmLT was blocked by the protein kinase A inhibitor H89 (similar to previous reports), these responses were not inhibited by a more specific PKA peptide inhibitor or antagonist; thus Indicating that a novel and unknown mechanism is responsible for inflammasome activation and cytokine secretion by LT proteins. Lastly, LTA1 stimulated a similar cytokine profile in primary human monocytes as it did in THP1 cells, including IL-1β, IL-6, IL-8, MIP-1α, MIP-1β, and TNFα. Thus, we report that LTA1 protein programs a dendritic cell-like phenotype in APCs similar to dmLT in a mechanism that is independent of PKA activation and GM1 binding and entry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.