The detection and location of issues in a network is a common problem encompassing a wide variety of research areas. Location-detection problems have been studied for wireless sensor networks and environmental monitoring, microprocessor fault detection, public utility contamination, and finding intruders in buildings. Modeling these systems as a graph, we want to find the smallest subset of nodes that, when sensors are placed at those locations, can detect and locate any anomalies that arise. One type of set that solves this problem is the open locating-dominating set (OLD-set), a set of nodes that forms a unique and nonempty neighborhood with every node in the graph. For this work, we begin with a study of OLD-sets in circulant graphs. Circulant graphs are a group of regular cyclic graphs that are often used in massively parallel systems. We prove the optimal OLD-set size for two circulant graphs using two proof techniques: the discharging method and Hall's Theorem. Next we introduce the mixed-weight open locating-dominating set (mixed-weight OLD-set), an extension of the OLD-set. The mixed-weight OLD-set allows nodes in the graph to have different weights, representing systems that use sensors of varying strengths. This is a novel approach to the study of location-detection problems. We show that the decision problem for the minimum mixed-weight OLD-set, for any weights up to positive integer d, is NP-complete. We find the size of mixed-weight OLD-sets in paths and cycles for weights 1 and 2. We consider mixed-weight OLD-sets in random graphs by providing probabilistic bounds on the size of the mixed-weight OLD-set and use simulation to reinforce the theoretical results. Finally, we build and study an integer linear program to solve for mixed-weight OLD-sets and use greedy algorithms to generate mixed-weight OLD-set estimates in random geometric graphs. We also extend our results for mixed-weight OLD-sets in random graphs to random geometric graphs by estimating the probabilistic upper bound for the size of the set.
Location detection problems have been studied for a variety of applications including finding faults in multiprocessors, contaminants in public utilities, intruders in buildings and facilities, and for environmental monitoring using wireless sensor networks. In each of these applications, the system or structure can be modeled as a graph, and sensors placed strategically at a subset of vertices can locate and detect anomalies in the system. An open locating-dominating set (OLD-set) is a subset of vertices in a graph in which every vertex in the graph has a non-empty and unique set of neighbors in the subset. Sensors placed at OLD-set vertices can uniquely detect and locate disturbances in a system. These sensors can be expensive and, as a result, minimizing the size of the OLD-set is critical. Circulant graphs, a group of regular cyclic graphs, are often used to model parallel networks. We prove the optimal OLD-set size for a particular circulant graph using Hall's Theorem. We also consider the mixed-weight OLD-set introduced in [R.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.