Receptor-interacting protein kinase 2 (RIP2 or RICK, herein referred to as RIPK2) is linked to the pathogen pathway that activates nuclear factor -light-chain-enhancer of activated B cells (NFB) and autophagic activation. Using molecular modeling (docking) and chemoinformatics analyses, we used the RIPK2/ponatinib crystal structure and searched in chemical databases for small molecules exerting binding interactions similar to those exerted by ponatinib. The identified RIPK2 inhibitors potently inhibited the proliferation of cancer cells by > 70% and also inhibited NFB activity. More importantly, in vivo inhibition of intestinal and lung inflammation rodent models suggests effectiveness to resolve inflammation with low toxicity to the animals. Thus, our identified RIPK2 inhibitor may offer possible therapeutic control of inflammation in diseases such as inflammatory bowel disease, asthma, cystic fibrosis, primary sclerosing cholangitis, and pancreatitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.