The significance of the Briançonnais domain in the Alpine orogen is reviewed in the light of data concerning its collision with the active Adriatic margin and the passive Helvetic margin. The Briançonnais which formerly belonged to the Iberian plate, was located on the northern margin of the Alpine Tethys (Liguro-Piémont ocean) since its opening in the early-Middle Jurassic. Together with the Iberian plate the Briançonnais terrane was separated from the European plate in the Late Jurassic-Early Cretaceous, following the northern Atlantic, Bay of Biscay, Valais ocean opening. This was accompanied by the onset of subduction along the northern margin of Adria and the closure of the Alpine Tethys. Stratigraphic and metamorphic data regarding this subduction and the geohistory of the Briançonnais allows the scenario of subduction-obduction processes during the Late Cretaceous-early Tertiary in the eastern and western Alps to be specified. HP-LT metamorphism record a long-lasting history of oceanic subduction-accretion, followed in the Middle Eocene by the incorporation of the Briançonnais as an exotic terrane into the accretionary prism. Middle to Late Eocene cooling ages of the Briançonnais basement and the presence of pelagic, anorogenic sedimentation lasting until the Middle Eocene on the Briançonnais preclude any sort of collision before that time between this domain and the active Adria margin or the Helvetic margin. This is confirmed by plate reconstructions constrained by magnetic anomalies in the Atlantic domain. Only a small percentage of the former Briançonnais domain was obducted, most of the crust and lithospheric roots were subducted. This applies also to domains formerly belonging to the southern Alpine Tethys margin (Austroalpine-inner Carpathian domain). It is proposed that there was a single Palaeogene subduction zone responsible for the Alpine orogen formation (from northern Spain to the East Carpathians), with the exception of a short-lived Late Cretaceous partial closure of the Valais ocean. Subduction in the western Tethyan domain originated during the closure of the Meliata ocean during the Jurassic incorporating the Austroalpine-Carpathian domain as terranes during the Cretaceous. The subduction zone propagated into the northern margin of Adria and then to the northern margin of the Iberian plate, where it gave birth to the Pyrenean-Provençal orogenic belt. This implies the absence of a separated Cretaceous subduction zone within the Austro-Carpathian Penninic ocean. Collision of Iberia with Europe forced the subduction to jump to the SE margin of Iberia in the Eocene, creating the Apenninic orogenic wedge and inverting the vergence of subduction from south-to north-directed.
Geological studies along a transect across the Himalaya in eastern Ladakh and Lahul provide new insights into the Tertiary structural evolution of this region. The initiation of the Nyimaling-Tsarap Nappe is related to an early phase of underthrusting of India below Asia. In Lahul, an opposite vergent intra-continental underthrusting develops immediately after continental collision (NE-vergent Tandi Syncline and Shikar Beh Nappe). This NE-vergent nappe stack is responsible for the amphibolite-facies regional metamorphism of the lower Chandra Valley. The subsequent phase corresponds to the main thrusting of the SW-vergent Nyimaling-Tsarap Nappe, developed by ductile shear (87 km Eocene shortening). This nappe pile is responsible for the regional metamorphism of SE Zanskar (kyanite-staurolite near Sarchu). The root zone and the frontal part of the Nyimaling-Tsarap Nappe are subsequently overprinted by two NW-SE-orientated dextral transpressional shear zones. To the south of the investigated area, the Main Central Thrust has been developed as a shear zone in the regional metamorphic ductile crustal rocks below the older nappes to the north. In the Sarchu and Nyimaling regions, the following tectonic phase corresponds to NE-vergent ‘backfolding’ (Miocene). Normal faults in the Sarchu area record a late extension of approximately 14 km.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.