Due to advancements in computational ability, enhanced technology and a reduction in the price of genotyping, more data are being generated for understanding genetic associations with diseases and disorders. However, with the availability of large data sets comes the inherent challenges of new methods of statistical analysis and modeling. Considering a complex phenotype may be the effect of a combination of multiple loci, various statistical methods have been developed for identifying genetic epistasis effects. Among these methods, logic regression (LR) is an intriguing approach incorporating tree-like structures. Various methods have built on the original LR to improve different aspects of the model. In this study, we review four variations of LR, namely Logic Feature Selection, Monte Carlo Logic Regression, Genetic Programming for Association Studies, and Modified Logic Regression-Gene Expression Programming, and investigate the performance of each method using simulated and real genotype data. We contrast these with another tree-like approach, namely Random Forests, and a Bayesian logistic regression with stochastic search variable selection.
In this paper, the space requirements for the OBDD representation of certain graph classes, specifically cographs, several types of graphs with few P4s, unit interval graphs, interval graphs and bipartite graphs are investigated. Upper and lower bounds are proven for all these graph classes and it is shown that in most (but not all) cases a representation of the graphs by OBDDs is advantageous with respect to space requirements.
Recently, it has been shown in a series of works that the representation of graphs by Ordered Binary Decision Diagrams (OBDDs) often leads to good algorithmic behavior. However, the question for which graph classes an OBDD representation is advantageous, has not been investigated, yet. In this paper, the space requirements for the OBDD representation of certain graph classes, specifically cographs, several types of graphs with few P 4 s, unit interval graphs, interval graphs and bipartite graphs are investigated. Upper and lower bounds are proven for all these graph classes and it is shown that in most (but not all) cases a representation of the graphs by OBDDs is advantageous with respect to space requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.