S U M M A R YDuring 1979 and 1980 the herbage yields of two permanent pastures and two temporary swards were compared. All four swards received 250 kg N/ha per yr. The invertebrate population of all four swards was studied. Pot-worms (Enchytraeidae) and some species with long life cycles, e.g. wireworms (Agriotes spp.) were more numerous in the permanent swards, but aerial species were more numerous in the temporary swards. A range of pesticide treatments was applied. At one temporary sward site, application of the broad-spectrum pesticide aldicarb increased total annual yield of herbage by 16% in 1979 and 33% in 1980. Insecticide application at the same site resulted in no increase in herbage yield in 1979 and 12% yield increase in 1980. At the other three sites no significant increases in total annual yield were recorded in either year, but there were significant responses at one harvest or more at every site.
Background Publicly available phenotype data and genotyping array data from two citizen science projects: “Doberman Health Surveys” and “The Doberman Diversity Project” were analyzed to explore relative homozygosity, diversity, and disorder risk according to geographical locale and breeding purpose in the Doberman. Results From the phenotypic data cohort, life expectancy of a Doberman at birth is 9.1 years. The leading causes of death were heart disease (accounting for 28% of deaths) and cancers (collectively accounting for 14% of deaths). By genotyping, the world Doberman population exists as four major cohorts (European exhibition-bred, Americas exhibition-bred, European work, Americas pet/informal). Considering the entire Doberman population, four genomic regions longer than 500 Kb are fixed in 90% or more of 3,226 dogs included in this study. The four fixed regions reside on two autosomal chromosomes: CFA3:0.8–2.3 Mb (1.55 Mb); CFA3: 57.9–59.8 Mb (1.8 Mb); CFA31:0–1.2 Mb (1.2 Mb); and CFA31:4.80–6.47 Mb (1.67 Mb). Using public variant call files including variants for eight Doberman pinschers, we observed 30 potentially functional alternate variants that were evolutionarily diverged relative to the wider sequenced dog population within the four strongly homozygous chromosomal regions. Effective population size (Ne) is a statistical measure of breed diversity at the time of sampling that approximates the number of unique individuals. The major identified sub-populations of Dobermans demonstrated Ne in the range 70–236. The mean level of inbreeding in the Doberman breed is 40% as calculated by the number of array variants in runs of homozygosity divided by the assayed genome size (excluding the X chromosome). The lowest observed level of inbreeding in the Dobermans assayed was 15% in animals that were first generation mixes of European and USA bred Dobermans. Array variant analysis shows that inter-crossing between European and USA-bred Dobermans has capacity to re-introduce variation at many loci that are strongly homozygous. Conclusions We conclude that efforts to improve breed diversity first should focus on regions with the highest fixation levels, but managers must ensure that mutation loads are not worsened by increasing the frequencies of rarer haplotypes in the identified regions. The analysis of global data identified regions of strong fixation that might impact known disorder risks in the breed. Plausible gene candidates for future analysis of the genetic basis of cardiac disease and cancer were identified in the analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.