Despite development of new antiviral drugs, viral infections are still a major health problem. The most potent antiviral defense mechanism is the innate production of type I interferon (IFN-I), which not only limits virus replication but also promotes antiviral T cell immunity through mechanisms, which remain insufficiently studied. Using the murine lymphocytic choriomeningitis virus model system, we show here that IFN-I signaling on T cells prevented their rapid elimination in vivo. Microarray analyses uncovered that IFN-I triggered the expression of selected inhibitory NK-cell-receptor ligands. Consequently, T cell immunity of IFN-I receptor (IFNAR)-deficient T cells could be restored by NK cell depletion or in NK-cell-deficient hosts (Nfil3(-/-)). The elimination of Ifnar1(-/-) T cells was dependent on NK-cell-mediated perforin expression. In summary, we identified IFN-I as a key player regulating the protection of T cells against regulatory NK cell function.
The protease ADAM17 (a disintegrin and metalloproteinase 17) catalyzes the shedding of various transmembrane proteins from the surface of cells, including tumor necrosis factor (TNF) and its receptors. Liberation of TNF receptors (TNFRs) from cell surfaces can dampen the cellular response to TNF, a cytokine that is critical in the innate immune response and promotes programmed cell death but can also promote sepsis. Catalytically inactive members of the rhomboid family of proteases, iRhom1 and iRhom2, mediate the intracellular transport and maturation of ADAM17. Using a genetic screen, we found that the presence of either iRhom1 or iRhom2 lacking part of their extended amino-terminal cytoplasmic domain (herein referred to as ΔN) increases ADAM17 activity, TNFR shedding, and resistance to TNF-induced cell death in fibrosarcoma cells. Inhibitors of ADAM17, but not of other ADAM family members, prevented the effects of iRhom-ΔN expression. iRhom1 and iRhom2 were functionally redundant, suggesting a conserved role for the iRhom amino termini. Cells from patients with a dominantly inherited cancer susceptibility syndrome called tylosis with esophageal cancer (TOC) have amino-terminal mutations in iRhom2. Keratinocytes from TOC patients exhibited increased TNFR1 shedding compared with cells from healthy donors. Our results explain how loss of the amino terminus in iRhom1 and iRhom2 impairs TNF signaling, despite enhancing ADAM17 activity, and may explain how mutations in the amino-terminal region contribute to the cancer predisposition syndrome TOC.
Interleukin‐6 (IL‐6) is critically involved in liver regeneration after partial hepatectomy (PHX). Previous reports suggest that IL‐6 trans‐signaling through the soluble IL‐6/IL‐6R complex is involved in this process. However, the long‐term contribution of IL‐6 trans‐signaling for liver regeneration after PHX is unknown. PHX‐induced generation of the soluble IL‐6R by ADAM (a disintegrin and metallo) proteases enables IL‐6 trans‐signaling, in which IL‐6 forms an agonistic complex with the soluble IL‐6 receptor (sIL‐6R) to activate all cells expressing the signal‐transducing receptor chain glycoprotein 130 (gp130). In contrast, without activation of ADAM proteases, IL‐6 in complex with membrane‐bound IL‐6R and gp130 activates classic signaling. Here, we describe the generation of IL‐6 trans‐signaling mice, which exhibit boosted IL‐6 trans‐signaling and abrogated classic signaling by genetic conversion of all membrane‐bound IL‐6R into sIL‐6R proteins phenocopying hyperactivation of ADAM‐mediated shedding of IL‐6R as single substrate. Importantly, although IL‐6R deficient mice were strongly affected by PHX, survival and regeneration of IL‐6 trans‐signaling mice was indistinguishable from control mice, demonstrating that IL‐6 trans‐signaling fully compensates for disabled classic signaling in liver regeneration after PHX. Moreover, we monitored the long‐term consequences of global IL‐6 signaling inhibition versus IL‐6 trans‐signaling selective blockade after PHX by IL‐6 monoclonal antibodies and soluble glycoprotein 130 as fragment crystallizable fusion, respectively. Both global IL‐6 blockade and selective inhibition of IL‐6 trans‐signaling results in a strong decrease of overall survival after PHX, accompanied by decreased signal transducer and activator of transcription 3 phosphorylation and proliferation of hepatocytes. Mechanistically, IL‐6 trans‐signaling induces hepatocyte growth factor production by hepatic stellate cells. Conclusion: IL‐6 trans‐signaling, but not classic signaling, controls liver regeneration following PHX.
Interleukin-6 (IL-6) is a proinflammatory cytokine of the IL-6 family, members of which signal through a complex of a cytokine-specific receptor and the signal-transducing subunit gp130. The interaction of IL-6 with the membrane-bound IL-6 receptor (IL-6R) and gp130 stimulates “classic signaling,” whereas the binding of IL-6 and a soluble version of the IL-6R to gp130 stimulates “trans-signaling.” Alternatively, “cluster signaling” occurs when membrane-bound IL-6:IL-6R complexes on transmitter cells activate gp130 receptors on neighboring receiver cells. The soluble form of gp130 (sgp130) is a selective trans-signaling inhibitor, but it does not affect classic signaling. We demonstrated that the interaction of soluble gp130 with natural and synthetic membrane-bound IL-6:IL-6R complexes inhibited IL-6 cluster signaling. Similarly, IL-11 cluster signaling through the IL-11R to gp130 was also inhibited by soluble gp130. However, autocrine classic and trans-signaling was not inhibited by extracellular inhibitors such as sgp130 or gp130 antibodies. Together, our results suggest that autocrine IL-6 signaling may occur intracellularly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.