Community Acquired Methicillin Resistant Staphylococcus aureus (CA-MRSA) causes severe necrotizing infections of the skin, soft tissues, and lungs. Staphylococcal α-hemolysin is an essential virulence factor in mouse models of CA-MRSA necrotizing pneumonia. S. aureus α-hemolysin has long been known to induce inflammatory signaling and cell death in host organisms, however the mechanism underlying these signaling events were not well understood. Using highly purified recombinant α-hemolysin, we now demonstrate that α-hemolysin activates the Nucleotide-binding domain and leucine-rich repeat containing gene family, pyrin domain containing 3 protein (NLRP3)-inflammasome, a host inflammatory signaling complex involved in responses to pathogens and endogenous danger signals. Non-cytolytic mutant α-hemolysin molecules fail to elicit NLRP3-inflammasome signaling, demonstrating that the responses are not due to non-specific activation of this innate immune signaling system by bacterially derived proteins. In monocyte-derived cells from humans and mice, inflammasome assembly in response to α-hemolysin results in activation of the cysteine proteinase, caspase-1. We also show that inflammasome activation by α-hemolysin works in conjunction with signaling by other CA-MRSA-derived Pathogen Associated Molecular Patterns (PAMPs) to induce secretion of pro-inflammatory cytokines IL-1β and IL-18. Additionally, α-hemolysin induces cell death in these cells through an NLRP3-dependent program of cellular necrosis, resulting in the release of endogenous pro-inflammatory molecules, like the chromatin-associated protein, High-mobility group box 1 (HMGB1). These studies link the activity of a major S. aureus virulence factor to a specific host signaling pathway. The cellular events linked to inflammasome activity have clear relevance to the disease processes associated with CA-MRSA including tissue necrosis and inflammation.
The interplay between innate and adaptive immunity is important in multiple sclerosis (MS). The inflammasome complex, which activates caspase-1 to process pro–IL-1β and pro–IL-18, is rapidly emerging as a pivotal regulator of innate immunity, with nucleotide-binding domain, leucine-rich repeat containing protein family, pyrin domain containing 3 (NLRP3) (cryopyrin or NALP3) as a prominent player. Although the role of NLRP3 in host response to pathogen associated molecular patterns and danger associated molecular patterns is well documented, its role in autoimmune diseases is less well studied. To investigate the role of NLRP3 protein in MS, we used a mouse model of MS, experimental autoimmune encephalomyelitis (EAE). Nlrp3 expression was elevated in the spinal cords during EAE, and Nlrp3−/− mice had a dramatically delayed course and reduced severity of disease. This was accompanied by a significant reduction of the inflammatory infiltrate including macrophages, dendritic cells, CD4, and CD8+ T cells in the spinal cords of the Nlrp3−/− mice, whereas microglial accumulation remained the same. Nlrp3−/− mice also displayed improved histology in the spinal cords with reduced destruction of myelin and astrogliosis. Nlrp3−/− mice with EAE produced less IL-18, and the disease course was similar to Il18−/− mice. Furthermore, Nlrp3−/− and Il18−/− mice had similarly reduced IFN-γ and IL-17 production. Thus, NLRP3 plays a critical role in the induction of the EAE, likely through effects on capase-1–dependent cytokines which then influence Th1 and Th17.
Francisella tularensis causes systemic disease in humans and other mammals, with high morbidity and mortality associated with inhalation-acquired infection. F. tularensis is a facultative intracellular pathogen, but the scope and significance of cell types infected during disease is unknown. Using flow cytometry, we identified and quantified infected-cell types and assessed the impact of infection on cell populations following inhalation of F. tularensis strains U112, LVS, and Schu S4. Initially, alveolar macrophages comprised over 70% of Schu S4-and LVS-infected cells, whereas approximately 51% and 27% of U112-infected cells were alveolar macrophages and neutrophils, respectively. After 3 days, roughly half of Schu S4-and LVS-and nearly 80% of U112-infected cells were neutrophils. All strains infected CD11b high macrophages, dendritic cells, monocytes, and alveolar type II cells throughout infection. Macrophage, monocyte, and dendritic-cell populations were reduced during U112 infection but not Schu S4 or LVS infection. These results demonstrate directly that F. tularensis is a promiscuous intracellular pathogen in the lung that invades and replicates within cell types ranging from migratory immune cells to structural tissue cells. However, the proportions of cell types infected and the cellular immune response evoked by the human pathogenic strain Schu S4 differ from those of the human avirulent U112.Since 2001, there has been increased interest in understanding pathogens with virulence characteristics that make them dangerous for purposeful release. One such organism is the gram-negative bacterium Francisella tularensis, the etiological agent of tularemia. Virulent strains of Francisella can cause incapacitating or lethal disease in humans, mice, and other mammals (24). Tularemia can be acquired via insect bites (13), by handling infected animal carcasses (30), from contaminated water (11), or by inhalation (15). Inhalation exposure results in the most-acute, rapidly progressing manifestation of disease (6). When inhaled, as few as 10 organisms can cause a debilitating, and potentially fatal, infection in humans (22).Given the seriousness of inhalation-acquired tularemia, surprisingly little is known about Francisella biology in the host lung. Within 1 hour after inhalation, Francisella is found in airway macrophages and dendritic cells (DCs) (3, 4). However, the infection of these cells does not trigger production of tumor necrosis factor alpha or interleukin-6 (3, 4). Instead, Francisella infection induces immunosuppressive mediators, such as transforming growth factor  (TGF-) (3) and prostaglandin E2 (31), through yet-unknown mechanisms. F. tularensis also infects other cell types important for host defense against lung infections, such as monocytes (23), neutrophils (16), and alveolar type II (ATII) epithelial cells (10).Growth within host cells is recognized as an important aspect of Francisella pathogenesis; however, the range and scope of cells infected throughout disease in an animal host have not b...
Francisella tularensis replicates in macrophages and dendritic cells, but interactions with other cell types have not been well described. F. tularensis LVS invaded and replicated within alveolar epithelial cell lines. Following intranasal inoculation of C57BL/6 mice, Francisella localized to the alveolus and replicated within alveolar type II epithelial cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.