The conjunctiva is a mucous membrane that covers the sclera and lines the inside of the eyelids. Throughout the conjunctiva are goblet cells that secrete mucins to protect the eye. Chronic inflammatory diseases such as allergic conjunctivitis and early dry eye lead to increased goblet cell mucin secretion into tears and ocular surface disease. The purpose of this study was to determine the actions of the inflammatory mediators, the leukotrienes and the proresolution resolvins, on secretion from cultured rat and human conjunctival goblet cells. We found that both cysteinyl leukotriene (CysLT) receptors, CysLT1 and CysLT2, were present in rat conjunctiva and in rat and human cultured conjunctival goblet cells. All leukotrienes LTB4, LTC4, LTD4, and LTE4, as well as PGD2, stimulated goblet cell secretion in rat goblet cells. LTD4 and LTE4 increased the intracellular Ca2+ concentration ([Ca2+]i), and LTD4 activated ERK1/2. The CysLT1 receptor antagonist MK571 significantly decreased LTD4-stimulated rat goblet cell secretion and the increase in [Ca2+]i. Resolvins D1 (RvD1) and E1 (RvE1) completely reduced LTD4-stimulated goblet cell secretion in cultured rat goblet cells. LTD4-induced secretion from human goblet cells was blocked by RvD1. RvD1 and RvE1 prevented LTD4- and LTE4-stimulated increases in [Ca2+]i, as well as LTD4 activation of ERK1/2. We conclude that cysteinyl leukotrienes stimulate conjunctival goblet cell mucous secretion with LTD4 using the CysLT1 receptor. Stimulated secretion is terminated by preventing the increase in [Ca2+]i and activation of ERK1/2 by RvD1 and RvE1.
Resolution of inflammation is an active process mediated by pro-resolution lipid mediators. Since resolvin (Rv) D1 is produced in the cornea, pro-resolution mediators could be effective in regulating inflammatory responses to histamine in allergic conjunctivitis. Two key mediators of resolution are the D-series resolvins RvD1 or aspirin-triggered RvD1 (AT-RvD1). We used cultured conjunctival goblet cells to determine whether histamine actions can be terminated during allergic responses. We found cross-talk between two types of G protein-coupled receptors, as RvD1 interacts with its receptor GPR32 to block histamine-stimulated H1 receptor increases in intracellular [Ca2+] ([Ca2+]i) preventing H1 receptor-mediated responses. In human and rat conjunctival goblet cells RvD1 and AT-RvD1 each block histamine-stimulated secretion by preventing its increase in [Ca2+]i and activation of extracellular regulated protein kinase (ERK)1/2. We suggest that D-series resolvins regulate histamine responses in the eye and offer new treatment approaches for allergic conjunctivitis or other histamine-dependent pathologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.