Analysing 88 sources published from 2011 to 2021, this paper presents a first systematic review of the computer vision-based analysis of buildings and the built environment. Its aim is to assess the potential of this research for architectural studies and the implications of a shift to a crossdisciplinarity approach between architecture and computer science for research problems, aims, processes, and applications. To this end, the types of algorithms and data sources used in the reviewed studies are discussed in respect to architectural applications such as a building classification, detail classification, qualitative environmental analysis, building condition survey, and building value estimation. Based on this, current research gaps and trends are identified, with two main research aims emerging. First, studies that use or optimise computer vision methods to automate time-consuming, labour-intensive, or complex tasks when analysing architectural image data. Second, work that explores the methodological benefits of machine learning approaches to overcome limitations of conventional analysis in order to investigate new questions about the built environment by finding patterns and relationships between visual, statistical, and qualitative data. The growing body of research offers new methods to architectural and design studies, with the paper identifying future challenges and directions of research.
HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Mechanical devices are ubiquitous in our daily lives, and the motion they are able to transmit is often a critical part of their function. While digital fabrication devices facilitate their realization, motiondriven mechanism design remains a challenging task. We take drawing machines as a case study in exploratory design. Devices such as the Spirograph can generate intricate patterns from an assembly of simple mechanical elements. Trying to control and customize these patterns, however, is particularly hard, especially when the number of parts increases. We propose a novel constrained exploration method that enables a user to easily explore feasible drawings by directly indicating pattern preferences at different levels of control. The user starts by selecting a target pattern with the help of construction lines and rough sketching, and then finetunes it by prescribing geometric features of interest directly on the drawing. The designed pattern can then be directly realized with an easy-to-fabricate drawing machine. The key technical challenge is to facilitate the exploration of the high dimensional configuration space of such fabricable machines. To this end, we propose a novel method that dynamically reparameterizes the local configuration space and allows the user to move continuously between pattern variations, while preserving user-specified feature constraints. We tested our framework on several examples, conducted a user study, and fabricated a sample of the designed examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.