Monitoring woody cover by remote sensing is considered a key methodology towards sustainable management of trees in dryland forests. However, while modern very high resolution satellite (VHRS) sensors allow woodland mapping at the individual tree level, the historical perspective is often hindered by lack of appropriate image data. In this first study employing the newly accessible historical HEXAGON KH-9 stereo-panoramic camera images for environmental research, we propose their use for mapping trees in open-canopy conditions. The 2–4 feet resolution panchromatic HEXAGON satellite photographs were taken 1971–1986 within the American reconnaissance programs that are better known to the scientific community for their lower-resolution CORONA images. Our aim is to evaluate the potential of combining historical CORONA and HEXAGON with recent WorldView VHRS imagery for retrospective woodland change mapping on the tree level. We mapped all trees on 30 1-ha test sites in open-canopy argan woodlands in Morocco in the field and from the VHRS imagery for estimating changes of tree density and size between 1967/1972 and 2018. Prior to image interpretation, we used simulations based on unmanned aerial system (UAS) imagery for exemplarily examining the role of illumination, viewing geometry and image resolution on the appearance of trees and their shadows in the historical panchromatic images. We show that understanding these parameters is imperative for correct detection and size-estimation of tree crowns. Our results confirm that tree maps derived solely from VHRS image analysis generally underestimate the number of small trees and trees in clumped-canopy groups. Nevertheless, HEXAGON images compare remarkably well with WorldView images and have much higher tree-mapping potential than CORONA. By classifying the trees in three sizes, we were able to measure tree-cover changes on an ordinal scale. Although we found no clear trend of forest degradation or recovery, our argan forest sites show varying patterns of change, which are further analysed in Part B of our study. We conclude that the HEXAGON stereo-panoramic camera images, of which 670,000 worldwide will soon be available, open exciting opportunities for retrospective monitoring of trees in open-canopy conditions and other woody vegetation patterns back into the 1980s and 1970s.
<p>In semi-arid to arid South-west Morocco, the endemic argan tree (<em>Argania spinosa</em>) forms open woodlands that are the basis of a traditional agroforestry system involving rain-fed agriculture, pasturing of goats, sheep and camels, and oil production. Due to the high grazing pressure, the trees show various morphological traits and growth forms that are strongly related to browsing intensity. The overall appearance of <em>Argania spinosa</em> ranges from trees with a large, round crown and single trunk, over multi-stem, umbrella-shaped and hourglass-shaped trees to heavily condensed cone-shaped cushions.</p><p>30 test sites of 1 ha each in argan woodlands of different degradation stages were surveyed with an unmanned aerial vehicle (UAV) and RGB optical camera using a dedicated flight scheme for capturing full 3D tree shape at approx. 1 cm resolution. Structure-from-Motion (SfM)-photogrammetric processing yielded dense 3D point clouds as well as ultra-high resolution (1.5 cm) digital surface models (DSMs), terrain models (DTMs), crown-height models (CHMs) and orthophoto mosaics. Tree height and crown size were extracted from the CHMs, and 3D point-cloud characteristics (point density, profile shape/layer structure) and canopy structures were analysed within a geographical information system (GIS). Using field-based reference data on tree architecture and browsing features of 2494 trees, we were able to assign characteristic combinations of the GIS-derived structural parameters to three browsing-intensity classes and thus classify each argan tree via the architectural shape captured in its UAV-based 3D point cloud. We found that the majority of argan trees at the study sites are characterised by high browsing intensities. The small percentage of trees in the minimum browsing class are mostly inaccessible to grazing livestock. We conclude that UAV-based remote sensing has a high potential for mapping structural indicators of tree degradation by herbivore browsing in open woodland environments.</p>
The argan woodlands of South Morocco represent an open-canopy dryland forest with traditional silvopastoral usage that includes browsing by goats, sheep and camels, oil production as well as agricultural use. In the past, these forests have undergone extensive clearing, but are now protected by the state. However, the remaining argan woodlands are still under pressure from intensive grazing and illegal firewood collection. Although the argan-forest area seems to be overall decreasing due to large forest clearings for intensive agriculture, little quantitative data is available on the dynamics and overall state of the remaining argan forest. To determine how the argan woodlands in the High Atlas and the Anti-Atlas had changed in tree-crown cover from 1972 to 2018 we used historical black and white HEXAGON satellite images as well as recent WorldView satellite images (see Part A of our study). Because tree shadows can oftentimes not be separated from the tree crown on panchromatic satellite images, individual trees were mapped in three size categories to determine if trees were unchanged, had decreased/increased in crown size or had disappeared or newly grown. The current state of the argan trees was evaluated by mapping tree architectures in the field. Tree-cover changes varied highly between the test sites. Trees that remained unchanged between 1972 and 2018 were in the majority, while tree mortality and tree establishment were nearly even. Small unchanged trees made up 48.4% of all remaining trees, of these 51% showed degraded tree architectures. 40% of small (re-) grown trees were so overbrowsed that they only appeared as bushes, while medium (3–7 m crown diameter) and large trees (>7 m) showed less degraded trees regardless if they had changed or not. Approaches like grazing exclusion or cereal cultivation lead to a positive influence on tree architecture and less tree-cover decrease. Although the woodland was found to be mostly unchanged 1972–2018, the analysis of tree architecture reveals that a lot of (mostly small) trees remained stable but in a degraded state. This stability might be the result of the small trees’ high degradation status and shows the heavy pressure on the argan forest.
<p>In semi-arid to arid South-west Morocco, the once ubiquitous endemic argan tree (<em>Argania spinosa</em>) forms the basis of a traditional silvo-pastoral agroforestry system with complex usage rights involving pasturing and tree-browsing by goats, sheep and camels, smallholder agriculture and oil production. Widespread clearing of the open-canopy argan forests has been undertaken in the 12<sup>th</sup>&#8211;17<sup>th</sup> century for sugarcane production, and again in the 20<sup>th</sup> century for fuelwood extraction and conversion to commercial agriculture. The remaining argan woodlands have continued to decline due to firewood extraction, charcoal-making, overgrazing and overbrowsing. Soil and vegetation are increasingly being degraded; natural rejuvenation is hindered, and soil-erosion rates rise due to reduced infiltration and increased runoff. Numerous studies indicate that tree density and canopy cover have been generally decreasing for the last 200 years. However, there is little quantitative and spatially explicit information about these forest-cover dynamics.</p><p>In our study, the tree-cover change between 1967 and 2019 was analysed for 30 test sites of 1 ha each in argan woodlands of different degradation stages in the provinces of Taroudant, Agadir Ida-Outanane and Chtouka-A&#239;t Baha. We used historical black-and-white satellite photography from the American reconnaissance programme CORONA, recent high-resolution multispectral imagery from the commercial WorldView satellites and ultrahigh resolution small-format aerial photography taken with an unmanned aerial system (UAS) to map the presence, absence and comparative crown-size class of 2610 trees in 1967 and 2019. We supplemented the remotely-sensed data with field observations on tree structure and architecture.</p><p>Results show that plant densities reach up to 300 argan trees and shrubs per hectare, and the mean tree density has increased from 58 trees/ha in 1967 to 86 trees/ha in 2019. While 7% of the 1967 trees have vanished today, more than one third of today&#8217;s trees could not be observed in 1967. This positive change has a high uncertainty, however, as most of the increase concerns small trees (< 3 m diameter) which might have been missed on the lower-resolution CORONA images.</p><p>When combined with our field data on tree architecture, tree count &#8211; albeit a parameter easily attained by remote sensing &#8211; is revealed as too simple an indicator for argan-forest dynamics, and the first impression of a positive development needs to be revised: The new small trees as well as trees with decreased crown sizes clearly show much stronger degradation characteristics than others, indicating increased pressures on the argan ecosystem during recent decades. Structural traits of the smaller trees also suggest that the apparent increase of tree count is not a result of natural rejuvenation, but mostly of stump re-sprouting, often into multi-stemmed trees, after felling of a tree. The density of the argan forest in the 1960s, prior to the general availability of cooking gas in the region and before the stronger enforcement of the argan logging ban following the declaration of the UNESCO biosphere reserve, may have marked a historic low in our study area, making the baseline of our change analysis far removed from the potential natural state of the argan ecosystem.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.