Liver cholestasis is a chronic liver disease and a major health problem worldwide. Cholestasis is characterised by a decrease in bile flow due to impaired secretion by hepatocytes or by obstruction of bile flow through intra- or extrahepatic bile ducts. Thereby cholestasis can induce ductal proliferation, hepatocyte injury and liver fibrosis. Notch signalling promotes the formation and maturation of bile duct structures. Here we investigated the liver regeneration process in the context of cholestasis induced by disruption of the Notch signalling pathway. Liver-specific deletion of recombination signal binding protein for immunoglobulin kappa j region (Rbpj), which represents a key regulator of Notch signalling, induces severe cholestasis through impaired intra-hepatic bile duct (IHBD) maturation, severe necrosis and increased lethality. Deregulation of the biliary compartment and cholestasis are associated with the change of several signalling pathways including a Kyoto Encyclopedia of Genes and Genomes (KEGG) gene set representing the Hippo pathway, further yes-associated protein (YAP) activation and upregulation of SRY (sex determining region Y)-box 9 (SOX9), which is associated with transdifferentiation of hepatocytes. SOX9 upregulation in cholestatic liver injury in vitro is independent of Notch signalling. We could comprehensively address that in vivo Rbpj depletion is followed by YAP activation, which influences the transdifferentiation of hepatocytes and thereby contributing to liver regeneration.
Cofilin-1 (CFL1) overexpression in pancreatic cancer correlates with high invasiveness and shorter survival. Besides a well-documented role in actin remodeling, additional cellular functions of CFL1 remain poorly understood. Here, we unraveled molecular tumor-promoting functions of CFL1 in pancreatic cancer. For this purpose, we first show that a knockdown of CFL1 results in reduced growth and proliferation rates in vitro and in vivo, while apoptosis is not induced. By mechanistic modeling we were able to predict the underlying regulation. Model simulations indicate that an imbalance in actin remodeling induces overexpression and activation of CFL1 by acting on transcription factor 7-like 2 (TCF7L2) and aurora kinase A (AURKA). Moreover, we could predict that CFL1 impacts proliferation and apoptosis via the signal transducer and activator of transcription 3 (STAT3). These initial model-based regulations could be substantiated by studying protein levels in pancreatic cancer cell lines and human datasets. Finally, we identified the surface protein CD44 as a promising therapeutic target for pancreatic cancer patients with high CFL1 expression.
Biological entities are key elements of biomedical research. Their definition and their relationships are important in areas such as phylogenetic reconstruction, developmental processes or tumor evolution. Hypotheses about relationships like phenotype order are often postulated based on prior knowledge or belief. Evidence on a molecular level is typically unknown and whether total orders are reflected in the molecular measurements is unclear or not assessed. In this work we propose a method that allows a fast and exhaustive screening for total orders in large datasets. We utilise ordinal classifier cascades to identify discriminable molecular representations of the phenotypes. These classifiers are constrained by an order hypothesis and are highly sensitive to incorrect assumptions. Two new error bounds, which are introduced and theoretically proven, lead to a substantial speed-up and allow the application to large collections of many phenotypes. In our experiments we show that by exhaustively evaluating all possible candidate orders, we are able to identify phenotype orders that best coincide with the high-dimensional molecular profiles.
The occurrence of adverse events frequently accompanies tumor treatments. Side effects should be detected and treated as soon as possible to maintain the best possible treatment outcome. Besides the standard reporting system Common Terminology Criteria for Adverse Events (CTCAE), physicians have recognized the potential of patient-reporting systems. These are based on a more subjective description of current patient reporting symptoms. Patient-reported symptoms are essential to define the impact of a given treatment on the quality of life and the patient’s wellbeing. They also act against an underreporting of side effects which are paramount to define the actual value of a treatment for the individual patient. Here, we present a study protocol for a clinical trial that assesses the potential of a smartphone application for CTCAE conform symptom reporting and tracking that is adjusted to the standard clinical reporting system rather than symptom oriented descriptive trial tools. The presented study will be implemented in two parts, both lasting over six months. The first part will assess the feasibility of the application with 30 patients non-randomly divided into three equally-sized age groups (<55years, 55-75years, >75years). In the second part 36 other patients will be randomly assigned to two groups, one reporting using the smartphone and one not. This prospective second part will compare the impact of smartphone reported adverse events regarding applied therapy doses and quality of life to those of patients receiving standard care. We aim for early detection and treatment of adverse events in oncological treatment to improve patients’ safety and outcomes. For this purpose, we will capture frequent adverse events of chemotherapies, immunotherapies, or other targeted therapies with our smartphone application. The presented trial is registered at the U.S. National Library of Medicine ClinicalTrials.gov (NCT04493450) on July 30, 2020.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.