Super-resolution (SR) fluorescence microscopy is typically carried out on research microscopes equipped with high-NA TIRF objectives and powerful laser light sources. Super-resolution optical fluctuation imaging (SOFI) is a fast SR technique capable of live-cell imaging, that is compatible with many wide-field microscope systems. However, especially when employing fluorescent proteins, a key part of the imaging system is a very sensitive and well calibrated camera sensor. The substantial costs of such systems preclude many research groups from employing SR imaging techniques. Here, we examine to what extent SOFI can be performed using a range of imaging hardware comprising different technologies and costs. In particular, we quantitatively compare the performance of an industry-grade CMOS camera to both state-of-the-art emCCD and sCMOS detectors, with SOFIspecific metrics. We show that SOFI data can be obtained using a cost-efficient industry-grade sensor, both on commercial and home-built microscope systems, though our analysis also readily exposes the merits of the per-pixel corrections performed in scientific cameras.
Super-resolution structured illumination microscopy (SR-SIM) can be conducted at video-rate acquisition speeds when combined with high-speed spatial light modulators and sCMOS cameras, rendering it particularly suitable for live-cell imaging. If, however, three-dimensional (3D) information is desired, the sequential acquisition of vertical image stacks employed by current setups significantly slows down the acquisition process. In this work, we present a multiplane approach to SR-SIM that overcomes this slowdown via the simultaneous acquisition of multiple object planes, employing a recently introduced multiplane image splitting prism combined with high-speed SIM illumination. This strategy requires only the introduction of a single optical element and the addition of a second camera to acquire a laterally highly resolved 3D image stack. We demonstrate the performance of multiplane SIM by applying this instrument to imaging the dynamics of mitochondria in living COS-7 cells.
Super-Resolution (SR) fluorescence microscopy is typically carried out on high-end research microscopes. Super-resolution Optical Fluctuation Imaging (SOFI) is a fast SR technique capable of livecell imaging, that is compatible with many wide-field microscope systems. However, especially when employing fluorescent proteins, a key part of the imaging system is a very sensitive and well calibrated camera sensor. The substantial costs of such systems preclude many research groups from employing super-resolution imaging techniques.Here, we examine to what extent SOFI can be performed using a range of imaging hardware comprising different technologies and costs. In particular, we quantitatively compare the performance of an industry-grade CMOS camera to both state-of-the-art emCCD and sCMOS detectors, with SOFI-specific metrics. We show that SOFI data can be obtained using a cost-efficient industry-grade sensor, both on commercial and home-built microscope systems, though our analysis also readily exposes the merits of the per-pixel corrections performed in scientific cameras.
Super-resolution optical fluctuation imaging (SOFI) is a well-known super-resolution technique appreciated for its versatility and broad applicability. However, even though an extended theoretical description is available, it is still not fully understood how the interplay between different experimental parameters influences the quality of a SOFI image. We investigated the relationship between five experimental parameters (measurement time, on-time ton, off-time toff, probe brightness, and out of focus background) and the quality of the super-resolved images they yielded, expressed as Signal to Noise Ratio (SNR). Empirical relationships were modeled for second- and third-order SOFI using data simulated according to a D-Optimal design of experiments, which is an ad-hoc design built to reduce the experimental load when the total number of trials to be conducted becomes too high for practical applications. This approach proves to be more reliable and efficient for parameter optimization compared to the more classical parameter by parameter approach. Our results indicate that the best image quality is achieved for the fastest emitter blinking (lowest ton and toff), lowest background level, and the highest measurement duration, while the brightness variation does not affect the quality in a statistically significant way within the investigated range. However, when the ranges spanned by the parameters are constrained, a different set of optimal conditions may arise. For example, for second-order SOFI, we identified situations in which the increase of toff can be beneficial to SNR, such as when the measurement duration is long enough. In general, optimal values of ton and toff have been found to be highly dependent from each other and from the measurement duration.
We present a modular implementation of structured illumination microscopy (SIM) that is fast, largely self-contained and that can be added onto existing fluorescence microscopes. Our strategy, which we call HIT-SIM, can theoretically deliver well over 50 super-resolved images per second and is readily compatible with existing acquisition software packages. We provide a full technical package consisting of schematics, a list of components and an alignment scheme that provides detailed specifications and assembly instructions. We illustrate the performance of the instrument by imaging optically large samples containing sequence-specifically stained DNA fragments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.