Invasive slugs and snails are among the most damaging pests of agriculture in temperate and tropical regions of the world. Control options, however, are limited and there is a heavy reliance on chemical molluscicides of variable efficacy. There is an ongoing need to improve management methods. Here, we show that a simple fermenting bread dough formulation (flour, water, and yeast) was effective in attracting pest mollusk species in laboratory tests, and in multiple replicated field trials in Hawaii, Oregon, and Montana. The dough attracted substantially more terrestrial pest gastropods, including invasive species of major economic importance such as Cornu aspersum, Deroceras reticulatum, Ambigolimax valentianus, Xerolenta obvia, Lissachatina fulica, and Parmarion martensi, than water controls. The dough remained attractive for at least 8 days and was significantly more attractive than a widely used metaldehyde-based bait, Deadline® M-Ps™. Thus, fermenting bread dough represents a nontoxic, generic, and effective tool to aid in managing pest gastropod infestations, either using baited traps or in attract-and-kill approaches. Given its simplicity, low cost, and the ready availability of its ingredients, the dough also has potential to be used in developing countries where access to commercial molluscicide baits is limited by cost.
Synthetic chemical lures mimicking pheromones or food attractants are essential tools in eradication programs for invasive species. However, their uses in programs aiming to control or eradicate terrestrial gastropods are largely unexplored. The goal of this study was to find a synthetic attractant that could aid in the eradication or management of the giant African snail (Lissachatina fulica). Field studies in Hawaii showed that a commercial papaya-flavored oil attracted snails. Analysis of the odor profile of the oil identified a total of 22 chemicals, which comprised > 98% of the volatile compounds emitted by the oil. A synthetic blend was reconstructed that mirrored the release rates of the papaya oil odors. In laboratory and field bioassays, the reconstructed blend, applied to cotton wicks as water and canola oil or water and mineral emulsions, attracted more snails than the water and oil emulsion control wicks. Field studies in Hawaii and Florida showed that the reconstructed blend in an oil emulsion was not attractive to non-target species such as butterflies or bees. The snails were attracted from distances > 1 m and entered traps baited with the attractant emulsion. When tested in the South Florida giant African snail eradication program, direct ground application of the reconstructed papaya-flavored oil emulsion increased the number of snails killed by over 87% compared to water emulsion controls. Integrating tactics using the synthetic papaya oil attractant into control measures should increase the effectiveness of eradication and management programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.