Azithromycin reduces airway inflammation and improves forced expiratory volume in 1 s (FEV1) in chronic rejection or bronchiolitis obliterans syndrome (BOS) after lung transplantation (LTx). Azithromycin prophylaxis might prevent BOS.A double-blind randomised controlled trial of azithromycin (n540) or placebo (n543), initiated at discharge and administered three times a week for 2 yrs, was performed in 2005-2009 at the Leuven University Hospital (Leuven, Belgium). Primary end-points were BOS-free and overall survival 2 yrs after LTx; secondary end-points were acute rejection, lymphocytic bronchiolitis and pneumonitis rate, prevalence of pseudomonal airway colonisation or gastro-oesophageal reflux, and change in FEV1, airway and systemic inflammation over time. Patients developing BOS were assessed for change in FEV1 with open-label azithromycin.BOS occurred less in patients receiving azithromycin: 12.5 versus 44.2% (p50.0017). BOS-free survival was better with azithromycin (hazard ratio 0.27, 95% CI 0.092-0.816; p50.020). Overall survival, acute rejection, lymphocytic bronchiolitis, pneumonitis, colonisation and reflux were comparable between groups. Patients receiving azithromycin demonstrated better FEV1 (p50.028), and lower airway neutrophilia (p50.015) and systemic C-reactive protein levels (p50.050) over time. Open-label azithromycin for BOS improved FEV1 in 52.2% patients. No serious adverse events were noted.Azithromycin prophylaxis attenuates local and systemic inflammation, improves FEV1 and reduces BOS 2 yrs after LTx.
Epidemiological and clinical reports indicate that SARS-CoV-2 virulence hinges upon the triggering of an aberrant host immune response, more so than on direct virus-induced cellular damage. To elucidate the immunopathology underlying COVID-19 severity, we perform cytokine and multiplex immune profiling in COVID-19 patients. We show that hypercytokinemia in COVID-19 differs from the interferon-gamma-driven cytokine storm in macrophage activation syndrome, and is more pronounced in critical versus mild-moderate COVID-19. Systems modelling of cytokine levels paired with deep-immune profiling shows that classical monocytes drive this hyper-inflammatory phenotype and that a reduction in T-lymphocytes correlates with disease severity, with CD8+ cells being disproportionately affected. Antigen presenting machinery expression is also reduced in critical disease. Furthermore, we report that neutrophils contribute to disease severity and local tissue damage by amplification of hypercytokinemia and the formation of neutrophil extracellular traps. Together our findings suggest a myeloid-driven immunopathology, in which hyperactivated neutrophils and an ineffective adaptive immune system act as mediators of COVID-19 disease severity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.