Glycosylation is a fundamental modification of proteins and membrane lipids. Toxins that utilize glycans as their receptors have served as powerful tools to identify key players in glycosylation processes. Here, we carried out Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9–mediated genome-wide loss-of-function screens using two related bacterial toxins, Shiga-like toxins (Stxs) 1 and 2, which use a specific glycolipid, globotriaosylceramide (Gb3), as receptors, and the plant toxin ricin, which recognizes a broad range of glycans. The Stxs screens identified major glycosyltransferases (GTs) and transporters involved in Gb3 biosynthesis, while the ricin screen identified GTs and transporters involved in N-linked protein glycosylation and fucosylation. The screens also identified lysosomal-associated protein transmembrane 4 alpha (LAPTM4A), a poorly characterized four-pass membrane protein, as a factor specifically required for Stxs. Mass spectrometry analysis of glycolipids and their precursors demonstrates that LAPTM4A knockout (KO) cells lack Gb3 biosynthesis. This requirement of LAPTM4A for Gb3 synthesis is not shared by its homolog lysosomal-associated protein transmembrane 4 beta (LAPTM4B), and switching the domains between them determined that the second luminal domain of LAPTM4A is required, potentially acting as a specific “activator” for the GT that synthesizes Gb3. These screens also revealed two Golgi proteins, Transmembrane protein 165 (TMEM165) and Transmembrane 9 superfamily member 2 (TM9SF2), as shared factors required for both Stxs and ricin. TMEM165 KO and TM9SF2 KO cells both showed a reduction in not only Gb3 but also other glycosphingolipids, suggesting that they are required for maintaining proper levels of glycosylation in general in the Golgi. In addition, TM9SF2 KO cells also showed defective endosomal trafficking. These studies reveal key Golgi proteins critical for regulating glycosylation and glycolipid synthesis and provide novel therapeutic targets for blocking Stxs and ricin toxicity.
Sialic acid-containing glycosphingolipids, gangliosides, are considered as cancer associated antigens in neuro-ectoderm-derived tumors such as melanomas and neuroblastomas. In particular, gangliosides GD3 and GD2 are expressed in human gliomas. It has been reported that their expression levels increase along with increased malignant properties. However, the implication of GD3/GD2 in human glioma cells has never been clarified, at least to the best of our knowledge. In this study, we introduced the cDNA of GD3 synthase (GD3S)(ST8SIA1) into a glioma cell line, U-251MG, that expresses neither GD3 nor GD2, thereby establishing transfectant cells U-251MG-GD3S(+) expressing high levels of GD3 and GD2 on the cell surface. In these U-251MG‑GD3S(+) cell lines, signaling molecules such as Erk1/2, Akt, p130Cas, paxillin and focal adhesion kinase were activated, leading to the enhancement of invasion activity and motility. It was then demonstrated that the U-251MG-GD3S(+) cells could proliferate under culture conditions with low or no serum concentrations without undergoing cell cycle arrest by escaping the accumulation of p16 and p21. All these results suggested that GD3 and GD2 highly expressed in gliomas confer increased invasion and mobility, cell growth abilities under low serum conditions, and increased ratios of the S-G2/M phase in the cell cycle.
Cancer‐associated glycosphingolipids have been used as markers for diagnosis and targets for immunotherapy of malignant tumors. Recent progress in the analysis of their implications in the malignant properties of cancer cells revealed that cancer‐associated glycosphingolipids are not only tumor markers, but also functional molecules regulating various signals introduced by membrane microdomains, lipid rafts. In particular, a novel approach, enzyme‐mediated activation of radical sources combined with mass spectrometry, has enabled us to clarify the mechanisms by which cancer‐associated glycosphingolipids regulate cell signals based on the interaction with membrane molecules and formation of molecular complexes on the cell surface. Novel findings obtained from these approaches are now providing us with insights into the development of new anticancer therapies targeting membrane molecular complexes consisting of cancer‐associated glycolipids and their associated membrane molecules. Thus, a new era of cancer‐associated glycosphingolipids has now begun.
Ganglioside GD2 is specifically expressed in small‐cell lung cancer (SCLC) cells, leading to enhancement of malignant phenotypes, such as cell proliferation and migration. However, how GD2 promotes malignant phenotypes in SCLC cells is not well known. In this study, to reveal the mechanisms by which GD2 increases malignant phenotypes in SCLC cells, we used enzyme‐mediated activation of radical sources combined with mass spectrometry in GD2+ SCLC cells. Consequently, we identified ASC amino acid transporter 2 (ASCT2), a major glutamine transporter, which coordinately works with GD2. We showed that ASCT2 was highly expressed in glycolipid‐enriched microdomain/rafts in GD2+ SCLC cells, and colocalized with GD2 in both proximity ligation assay and immunocytostaining, and bound with GD2 in immunoprecipitation/TLC immunostaining. Malignant phenotypes of GD2+ SCLC cells were enhanced by glutamine uptake, and were suppressed by L‐γ‐glutamyl‐p‐nitroanilide, a specific inhibitor of ASCT2, through reduced phosphorylation of p70 S6K1 and S6. These results suggested that ASCT2 enhances glutamine uptake in glycolipid‐enriched microdomain/rafts in GD2+ SCLC cells, leading to the enhancement of cell proliferation and migration through increased phosphorylation of the mTOR complex 1 signaling axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.