In super-continuum (SC) source based spectral domain optical coherence tomography (SC-SDOCT), the stability of the power spectral density (PSD) has a significant impact on OCT system sensitivity and image signal to noise ratio (SNR). High speed imaging decreases the camera's exposure time, thus each A-scan contained fewer laser pulse excited SC wideband emissions, resulting in a decrease of SNR. In this manuscript, we present a buffer-averaging SC-SDOCT (BASC-SDOCT) to improve the system's performance without losing imaging speed, taking advantage of the excess output power from typical SC sources. In our proposed technique, the output light from SC was passed through a fiber based light buffering and averaging system to improve the PSD stability by averaging 8 SC emissions. The results showed that 6.96 µs of SC emission after buffering and averaging can achieve the same PSD stability equivalent to a longer exposure time of 55.68 µs, despite increasing the imaging speed from 16.8 kHz to 91.9 kHz. The system sensitivity was improved by 8.6 dB, reaching 100.6 dB, which in turn improved SNR of structural imaging, Doppler OCT velocity measurement, and speckle variance OCT (SVOCT) angiographic imaging as demonstrated by phantom and in vivo experiments.
Doppler optical coherence tomography for energy seal evaluation and comparison to visual evaluation," J.Abstract. Laser energy sealing systems have attracted much attention over the past decade Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.