ResumoRecentemente tem havido um aumento no interesse, tanto no meio acadêmico quanto na indústria, em aplicações de aprendizagem de máquina e técnicas de inteligência artificial relacionadas com problemas agrícolas. Mineração de texto e técnicas relacionadas com o processamento da língua natural, raramente foram usadas para resolver problemas agrícolas, e muito menos para a língua portuguesa.É possível que um dos fatores que influenciam a escassez no uso técnicas de mineração de texto, para analisar textos em português e resolver problemas agrícolas, pode ser devidoà falta de um corpus anotado livremente disponível. Para colmatar a falta de um corpus agrícola em língua portuguesa, estamos liberando um recurso em português-brasileiro voltado para agricultura, descrito neste artigo. O corpus abrange um período parcialmente contínuo de tempo entre 1996 e 2016, consistindo de notícias em português-brasileiro que foram anotadas com o seguinte tipo de informação: causal, sentimento, entidades nomeadas que incluem expressões temporais. O corpus tem recursos adicionais como: treebank, listas de termos frequentes (sem stop-words): unigramas, bigramas e trigramas, bem como palavras ou frases que foram identificados por jornalistas como de domínio específico. Espera-se que a liberação do corpus estimule a adoção da mineração de texto na agricultura na comunidade de pesquisa lusófona.
AbstractThere has been a recent sharp increase in interest in academia and industry in applying machine learning and artificial intelligence to agricultural problems. Text mining and related natural language processing techniques, have been rarely used to tackle agricultural problems, and at the time of writing there was a single project in the Portuguese language. It is 1. Palavras frequentes; 2.
The present work intends to study the effectiveness of applying Manchester Triage System to improve patient flow in a Brazilian hospital, which allow a more welcoming and decisive service. Thus, time to event techniques are applied based on parametric regression models with the objective of investigating indicators for the emergency/urgency sector and thus, contributing to better operational efficiency. The results show that different explanatory variables such as classification, age, period, among others, influence in the time of attendance. At the end, we provide a simple model that can be used to predict such time under different explanatory variable for a particular Brazilian hospital.
The present work intends to study the effectiveness of applying the Manchester Triage System to improve patient flow in a Brazilian hospital, which allows a more welcoming and decisive service. Thus, time to event techniques is applied based on parametric regression models with the objective of investigating indicators for the emergency/urgency sector and thus, contributing to better operational efficiency. The results show that different explanatory variables such as classification, age, period, among others, influence the time of attendance. In the end, we provide a simple model that can be used to predict such time under different explanatory variables for a particular Brazilian hospital.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.