Lipoic acid (LA) is a mitochondrial coenzyme that, depending on the concentration and exposure time, can behave as an antioxidant or pro-oxidant agent and has a proven ability to modulate metabolism by promoting lipid and glucose oxidation for energy production. To assess the effects of LA on energy metabolism and redox balance over time, Artemia sp. nauplii was used as an animal model. The administered concentrations of the antioxidant were 0.05, 0.1, 0.5, 1.0, 5.0, and 10.0 µM. Therefore, possible differences in protein, triglyceride, glucose, and lactate concentrations in the artemia samples and total ammoniacal nitrogen (TAN) in the culture water were evaluated. We also measured the effects of LA on in vivo activity of the electron transport system (ETS), antioxidant capacity, and production of reactive oxygen species (ROS) at 6, 12, 18, and 24 h post-hatching. There was a decrease in glucose concentration in the LA-treated animals, and a decrease in ammonia production was observed in the 0.5 µM LA treatment. ETS activity was positively regulated by the addition of LA, with the most significant effects at concentrations of 5.0 and 10.0 µM at 12 and 24 h. For ETS activity, treatments with LA presented the highest values at 24 h, a period when ROS production decreased significantly, for the treatment with 10.0 µM. LA showed positive regulation of energy metabolism together with a decrease in ROS and TAN excretion.
The chemoprotection of “buriti” Mauritia flexuosa (inclusion in diet: 0-control group; 1.25; 2.50; 5.00; and 10.00% W/W) to Litopenaeus vannamei postlarvae (PL) exposed to ammonia or nitrite was investigated. Analyzed variables include antioxidant (ACAP) and oxidative damage (TBARS) responses and levels of total carotenoids. The results indicated that there was no significant difference (p >0.05) in zootechnical variables between diets. The PL carotenoid content (R2 = 0.86), ACAP (R2 = 0.78), and TBARS (R2 = 0.91) showed a dose-dependent relationship with the inclusion levels of “buriti” (p <0.05). After 43 days, juvenile shrimps were exposed for 96 h to ammonia (0.48 mg NH3-N L-1) or nitrite (40 mg NO3 L-1). Higher scavenging activity against peroxyl radicals was observed in PL fed with 2.50 and 5.00% of “buriti” (ammonia exposure), or 5.00 and 10.00% (nitrite exposure) of “buriti” inclusion. Content of reduced glutathione was higher in shrimps exposed to ammonia and fed with 10.00% of “buriti”. Lipid peroxidation levels were lower in shrimps exposed to ammonia or nitrite and previously fed with inclusion higher than 2.50% of “buriti”. The increased scavenging activity and lower lipid peroxidation in ammonia or nitrite-exposed organisms and previously supplemented with “buriti” point to a hormetic response that increases the resilience of L. vannamei to cope with nitrogenous compounds, pointing to the use of this fruit as a chemoprotectant agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.