In this work, we computate the trace form [Formula: see text] associated to a cyclic number field [Formula: see text] of odd prime degree [Formula: see text], where [Formula: see text] ramified in [Formula: see text] and [Formula: see text] belongs to the ring of integers of [Formula: see text]. Furthermore, we use this trace form to calculate the expression of the center density of algebraic lattices constructed via the Minkowski embedding from some ideals in the ring of integers of [Formula: see text].
In this work, we present constructions of algebraic lattices in Euclidean space with optimal center density in dimensions 2, 3, 4, 5, 6, 8 and 12, which are rotated versions of the lattices Λ n , for n = 2, 3, 4, 5, 6, 8 and K 12 . These algebraic lattices are constructed through canonical homomorphism via Zmodules of the ring of algebraic integers of a number field.
Several works have characterized weak instances of the Ring-LWE problem by exploring vulnerabilities arising from the use of algebraic structures. Although these weak instances are not addressed by worst-case hardness theorems, enabling other ring instantiations enlarges the scope of possible applications and favors the diversification of security assumptions. In this work, we extend the Ring-LWE problem in lattice-based cryptography to include algebraic lattices, realized through twisted embeddings. We define the class of problems Twisted Ring-LWE, which replaces the canonical embedding by an extended form. By doing so, we allow the Ring-LWE problem to be used over maximal real subfields of cyclotomic number fields. We prove that Twisted Ring-LWE is secure by providing a security reduction from Ring-LWE to Twisted Ring-LWE in both search and decision forms. It is also shown that the twist factor does not affect the asymptotic approximation factors in the worst-case to average-case reductions. Thus, Twisted Ring-LWE maintains the consolidated hardness guarantee of Ring-LWE and increases the existing scope of algebraic lattices that can be considered for cryptographic applications. Additionally, we expand on the results of Ducas and Durmus (Public-Key Cryptography, 2012) on spherical Gaussian distributions to the proposed class of lattices under certain restrictions. As a result, sampling from a spherical Gaussian distribution can be done directly in the respective number field while maintaining its format and standard deviation when seen in Zn via twisted embeddings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.