At the Royal Botanic Garden Edinburgh (RBGE) the use of Optical Character Recognition (OCR) to aid the digitisation process has been investigated. This was tested using a herbarium specimen digitisation process with two stages of data entry. Records were initially batch-processed to add data extracted from the OCR text prior to being sorted based on Collector and/or Country. Using images of the specimens, a team of six digitisers then added data to the specimen records. To investigate whether the data from OCR aid the digitisation process, they completed a series of trials which compared the efficiency of data entry between sorted and unsorted batches of specimens. A survey was carried out to explore the opinion of the digitisation staff to the different sorting options. In total 7,200 specimens were processed.When compared to an unsorted, random set of specimens, those which were sorted based on data added from the OCR were quicker to digitise. Of the methods tested here, the most successful in terms of efficiency used a protocol which required entering data into a limited set of fields and where the records were filtered by Collector and Country. The survey and subsequent discussions with the digitisation staff highlighted their preference for working with sorted specimens, in which label layout, locations and handwriting are likely to be similar, and so a familiarity with the Collector or Country is rapidly established.
A taxonomic revision of Duboscia (Malvaceae) with two species, D. macrocarpa and D. viridiflora, is presented and used to demonstrate a mechanism for linking from revisions to specimens held in herbaria using HTTP URIs. The implementation of this mechanism at the Royal Botanic Garden Edinburgh (E) is used as an example. Advantages of this approach include near universal support amongst web-connected devices. Hindrances to widespread adoption of such an approach are also discussed.
This report reviews the current state-of-the-art applied approaches on automated tools, services and workflows for extracting information from images of natural history specimens and their labels. We consider the potential for repurposing existing tools, including workflow management systems; and areas where more development is required. This paper was written as part of the SYNTHESYS+ project for software development teams and informatics teams working on new software-based approaches to improve mass digitisation of natural history specimens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.