Coastal aquaculture has experienced substantial growth in the last few decades and associated impacts on natural environments are of increasing importance. Understanding both the effects of aquaculture on marine ecosystems and the processes of recovery during fallowing periods is crucial for the development of a more environmentally sustainable industry. Because bacteria are sensitive to environmental change, surveying fluctuations in bacterial communities is a promising tool for monitoring the status of benthic environments. Here, we used 16S rRNA gene high-throughput sequencing to characterize bacterial communities in flocculent matter samples collected over a period of 3 years and at various distances from cages (0–200 meters) at production and fallow (3–35 months) salmon aquaculture sites in southern Newfoundland to evaluate the environmental impact of aquaculture on predominantly hard-bottom substrates. Bacterial composition analysis revealed four clusters, three of which (defined as “recently disturbed,” “intermediate impact,” and “high impact”) differed markedly from a fourth “low impact” cluster that contained far-field samples collected >500 m from cages. Samples within the high impact group were most often collected directly under cages, whereas those in the intermediate impact group were mainly sampled from 20 to 40 m from cages. Large scale phylum shifts (increases of Bacteroidetes, Firmicutes, Spirochaetes, and decreases in Proteobacteria and Epsilonbacteraeota) and a decline in bacterial diversity were observed in the high impact cluster, indicating significant ecological change. Samples from sites of different fallow duration were found in the high impact cluster, indicating a lack of recovery, even after 35 months of fallowing. Finally, we identified 28 genera as bacterial biomarkers, specific to one or more clusters, including genera associated with organically enriched environments and previously reported in the context of aquaculture impacts. Tracking the relative abundance of biomarkers in relation to different lengths of fallowing in the three more impacted clusters showed that these markers remained significantly above low impact cluster levels at all times, further pointing toward incomplete recovery. Our results suggest that coastal aquaculture on hard-bottom substrates is prone to long lasting impacts on bacterial communities, especially below cages, and that effects can be accurately tracked using bacterial community profiles or specific biomarkers.
The expansion of aquaculture is resulting in sites being installed over a diversity of substrate types, leading to different potential chemotherapeutant degradation scenarios. There is little to no information on the biodegradation and/or persistence of chemotherapeutants at hard-bottom dominated aquaculture sites having little natural sediment. In this study, we measured organic matter (OM) content and concentrations of chemicals linked to finfish aquaculture activities (trace elements, antibiotics and parasiticides) in flocculent matter samples collected close to cages at a site fallowed for 2 years and at an active site, the latter being indicative of flocculent chemical signature during production. Our results show persistence of flocculent matter after 2 years of fallow. The chemical signature of the samples confirms that Cu, Zn, Ca, and P, present around fish cages, are direct markers of aquaculture wastes. Persistence of two pyrethroids, one avermectin, and one antibiotic in grab samples show a potentially lasting association between these chemicals and the OM from fish feed and wastes, even after 2 years. Overall, the concentrations measured do not indicate a direct lethal toxicity on marine organisms (as per studies described in literature) except for Zn. Nevertheless, the long-term persistence of a flocculent mixture rich in chemicals and the lack of information on sublethal and synergistic effects on hard-bottom communities calls for caution and additional studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.