Currently there are no effective therapies available for the excruciating neuropathic pain that develops after spinal cord injuries (SCI). As such, a great deal of effort is being put into the investigation of novel therapeutic targets that can alleviate this pain. One such target is acrolein, a highly reactive aldehyde produced as a byproduct of oxidative stress and inflammation that is capable of activating the transient receptor potential ankyrin 1 (TRPA1) cation channel, known to be involved in the transmission and propagation of chronic neuropathic pain. One anti-acrolein agent, hydralazine, has already been shown to reduce neuropathic pain behaviors and offer neuroprotection after SCI. This study investigates another acrolein scavenger, phenelzine, for its possible role of alleviating sensory hypersensitivity through acrolein suppression. The results show that phenelzine is indeed capable of attenuating neuropathic pain behaviors in acute, delayed, and chronic administration schedules after injury in a rat model of SCI. Additionally, upon the comparison of hydralazine to phenelzine, both acrolein scavengers displayed a dose-dependent response in the reduction of acrolein in vivo. Finally, phenelzine proved capable of providing locomotor function recovery and neuroprotection of spinal cord tissue when administered immediately after injury for two weeks. These results indicate that phenelzine may be an effective treatment for neuropathic pain after SCI and likely a viable alternative to hydralazine.
In some parts of the world, the laboratory pig (Sus scrofa) is often housed in individual, sterile housing which may impose stress. Our objectives were to determine the effects of isolation and enrichment on pigs housed within the PigTurn® — a novel penning system with automated blood sampling — and to investigate tear staining as a novel welfare indicator. Twenty Yorkshire × Landrace weaner pigs were randomly assigned to one of four treatments in a 2 × 2 factorial combination of enrichment (non-enriched [NE] or enriched [E]) and isolation (visually isolated [I] or able to see another pig [NI]). Pigs were catheterised and placed into the PigTurns® 48 h post recovery. Blood was collected automatically twice daily to determine white blood cell (WBC) differential counts and assayed for cortisol. Photographs of the eyes were taken daily and tear staining was quantified using a 0-5 scoring scale and Image-J software to measure stain area and perimeter. Behaviour was video recorded and scan sampled to determine time budgets. Data were analysed as an REML using the MIXED procedure of SAS. Enrichment tended to increase proportion of time standing and lying laterally and decrease plasma cortisol, tear-stain area and perimeter. There was a significant isolation by enrichment interaction. Enrichment given to pigs housed in isolation had no effect on plasma cortisol, but greatly reduced it in non-isolated pigs. Tear-staining area and perimeter were highest in the NE-I treatment compared to the other three treatments. Eosinophil count was highest in the E-NI treatment and lowest in the NE-I treatment. The results suggest that in the absence of enrichment, being able to see another animal but not interact may be frustrating. The combination of no enrichment and isolation maximally impacted tear staining and eosinophil numbers. However, appropriate enrichment coupled with proximity of another pig would appear to improve welfare.
The aim of this study is to develop an orally disintegrating film (ODF) containing a microparticulate measles vaccine formulation for buccal delivery. The measles vaccine microparticles were made with biocompatible and biodegradable bovine serum albumin (BSA) and processed by spray drying. These vaccine microparticles were incorporated in the ODF, consisting of Lycoat RS720®, Neosorb P60W® and Tween 80. The yield of the microparticles was approximately 85-95%, w/w. The mean size of the vaccine microparticles was 3.65 ± 1.89 μm and had a slightly negative surface charge of 32.65 ± 2.4 mV. The vaccine particles were nontoxic to normal cells at high concentrations (500 μg/2.5 × 10 cells) of vaccine particles. There was a significant induction of innate immune response by vaccine microparticles which was observed in vitro when compared to blank microparticles (P < 0.05). The vaccine microparticles also significantly increased the antigen presentation and co-stimulatory molecules expression on antigen presenting cells, which is a prerequisite for Th1 and Th2 immune responses. When the ODF vaccine formulation was dosed in juvenile pigs, significantly higher antibody titers were observed after week 2, with a significant increase at week 4 and plateauing through week 6 comparative to naïve predose titers. The results suggest that the ODF measles vaccine formulation is a viable dosage form alternative to noninvasive immunization that may increase patient compliance and commercial distribution.
Pediatric drug development is hampered by biological, clinical, and formulation challenges associated with age-based populations. A primary cause for this lack of development is the inability to accurately predict ontogenic changes that affect pharmacokinetics (PK) in children using traditional preclinical animal models. In response to this issue, our laboratory has conducted a proof-of-concept study to investigate the potential utility of juvenile pigs to serve as surrogates for children during preclinical PK testing of selected rifampin dosage forms. Pigs were surgically modified with jugular vein catheters that were externalized in the dorsal scapular region and connected to an automated blood sampling system (PigTurn-Culex-L). Commercially available rifampin capsules were administered to both 20 and 40 kg pigs to determine relevant PK parameters. Orally disintegrating tablet formulations of rifampin were also developed and administered to 20 kg pigs. Plasma samples were prepared from whole blood by centrifugation and analyzed for rifampin content by liquid chromatography-tandem mass spectrometry. Porcine PK parameters were determined from the resultant plasma-concentration time profiles and contrasted with published rifampin PK data in human adults and children. Results indicated significant similarities in dose-normalized absorption and elimination parameters between pigs and humans. Moreover, ontogenic changes observed in porcine PK parameters were consistent with ontogenic changes reported for human PK. These results demonstrate the potential utility of the juvenile porcine model for predicting human pediatric PK for rifampin. Furthermore, utilization of juvenile pigs during formulation testing may provide an alternative approach to expedite reformulation efforts during pediatric drug development.
Minimising the effects of restraint and human interaction on the endocrine physiology of animals is essential for collection of accurate physiological measurements. Our objective was to compare stress-induced cortisol (CORT) and noradrenalin (NorA) responses in automated vs manual blood sampling in pigs. A total of 16 pigs (30 kg) were assigned to either: (i) automated blood sampling via an indwelling catheter using a novel-penning system called PigTurn® which detects the pig's rotational movement and responds by counter-rotating, allowing free movement while preventing catheter twisting; (ii) automated sampling while exposed to visual and auditory responses of manually sampled pigs; or (iii) manual sampling by jugular venipuncture while pigs were restrained in dorsal recumbency. During sampling of (i), personnel were not permitted in the room; samplings of (ii) and (iii) were performed simultaneously in the same room. Blood samples were collected every 20 min for 120 min and measured for CORT (ng ml-1) using mass spectrometry and NorA (pg ml-1) using High Performance Liquid Chromatography (HPLC). Effects of treatment and time were computed with mixed models adjusted by Tukey post hoc. CORT and NorA concentrations were lowest in group (i) followed by group (ii), which were not different. However, CORT and NorA levels in manually sampled animals (iii) were highest compared to automated methods (i) and (ii). Plasma concentrations across time were not different for CORT, but NorA concentration at time 0 min was higher than at 120 min. The presence of visual and auditory stimuli evoked by manual sampled animals did not affect non-handled pigs' responses. Restraint and manual sampling of pigs can be extremely stressful while the automated blood sampling of freely moving pigs, housed in the PigTurn® was significantly less stressful for the animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.