The organization of functional regions within genomes has important implications for evolutionary potential. Considerable research effort has gone toward identifying the genomic basis of phenotypic traits of interest through quantitative trait loci (QTL) analyses. Less research has assessed the arrangement of QTL in the genome within and across species. To investigate the distribution, extent of colocalization, and the synteny of QTL for ecologically relevant traits, we used a comparative genomic mapping approach within and across a range of salmonid species. We compiled 943 QTL from all available species [lake whitefish (), coho salmon (), rainbow trout (), Chinook salmon (), Atlantic salmon (), and Arctic charr ()]. We developed a novel analytical framework for mapping and testing the distribution of these QTL. We found no correlation between QTL density and gene density at the chromosome level but did at the fine-scale. Two chromosomes were significantly enriched for QTL. We found multiple synteny blocks for morphological, life history, and physiological traits across species, but only morphology and physiology had significantly more than expected. Two or three pairs of traits were significantly colocalized in three species (lake whitefish, coho salmon, and rainbow trout). Colocalization and fine-scale synteny suggest genetic linkage between traits within species and a conserved genetic basis across species. However, this pattern was weak overall, with colocalization and synteny being relatively rare. These findings advance our understanding of the role of genomic organization in the renowned ecological and phenotypic variability of salmonid fishes.
Research on biological rhythms has revealed widespread variation in timing within populations. Repeatable individual chronotypes have been linked to performance in humans but, in free-living species, benefits of chronotype are poorly understood. To address this gap, we investigated fitness correlates of incubation patterns in female songbirds (great tit, Parus major) at urban and forest sites. We confirm repeatable chronotypes (r ≥ 0.31) and show novel links between chronotype and reproductive fitness. In both habitats, females that started activity earlier in the day raised more fledglings. We also observed that forest females started their day at similar times throughout the breeding season, whereas urban females tied their onset of activity closely to sunrise. Our study points to possible mechanisms that underlie chronotype variation and provides sought-after evidence for its relevance to fitness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.