Liquid digestate is considered as an important by-product of anaerobic digestion of agriculture wastes. Currently, it is very often directly spread on local agricultural land. Yet recently concerns on its environmental risk of this processing has begun to rise. On the other hand, investigations on the effectiveness of microalgae for wastewater treatment have started to consider also this complex matrix. In this study, we cultured the green alga Chlorella vulgaris in diluted digestate coming from the anaerobic digestion of pig slurry and corn, with the aim to significantly reduce its toxicity and its very high nutrient concentration.For this purpose, a battery of toxicity tests composed of four acute and two chronic bioassays was applied after the alga cultivation. Results were compared with those obtained in the initial characterization of the digestate. Results show that highly diluted piggery digestate can be a suitable medium for culturing microalgae, as we obtained a high removal efficiency (> 90%) for ammonia, total nitrogen and phosphate, though after a few days phosphorus limitation occurred. Toxicity was significantly reduced for all the organisms tested. Possible solutions for optimizing this approach avoiding high dilution rates are discussed.
Seaweeds have been used as animal feed since a long time and are consumed as food in several cultures. In fact, macroalgae are a source of protein, fiber, polyunsaturated fat, and minerals. The concentration of trace elements was determined in dominant macroalga species from three sites of the northwestern Mediterranean Sea. A high interspecies variability was observed, with higher metal levels in brown and green than those in red seaweeds. The maximum values set by European regulations for arsenic, mercury, and cadmium in food and feed were never exceeded, but a few samples were very close to limits set for mercury. Conversely, the maximum limit for lead in feed was exceeded in all species from one of the considered sites. Analogously, lead in seaweeds could constitute a potential risk for human health, due to the exceeding of the maximum value set for food supplements.
We monitored the concentration of 21 trace elements in zooplankton samples collected in a Northwestern Mediterranean coastal ecosystem (Italy). In the last 20 years, this area has been the target of important anthropogenic impacts including maritime traffic and substantial industrial activities. Zooplankton contributes to the transfer of trace metals to higher trophic levels and constitute one of the recommended groups for the baseline studies of metals in the marine environment. The essential trace elements (As, Cu, Mn, Zn, Fe, Mo, Co, Cr, Se, Ni) and the nonessential trace elements (Al, Be, Cd, Pb, Sb, Sn, V) were generally found at concentrations of no concern in the analyzed zooplankton samples, but showed important variations between seasons and different water depths. The zooplankton was found to be a significant accumulator of metals, and bioaccumulation factors were in the range of 28 (Co) to 109015 (Fe) in marine surficial waters, with increasing values at increasing water depth. Zooplankton is a useful bioindicator to assess metal contamination and its impact in the marine environment.
Crayfish are regarded as useful indicators of environmental quality and freshwater biodiversity. However, reliable methods for monitoring their populations are needed so that this potential can be fully utilised. We report and discuss methodological aspects of the white-clawed crayfish (Austropotamobius pallipes complex) survey conducted in Piedmont, Italy, with the use of mark-recapture. The results suggest that the method can serve as a convenient tool for estimating the size of crayfish populations and inferring their temporal trends. The two populations investigated appeared closed except for wintertime and July. Consequently, the Robust Design, which is regarded as the most reliable mark-recapture approach, can be easily applied. The minimum effective sampling plan for monitoring purposes should comprise one primary period per year, conducted in the summer-autumn season, and consisting of three capture sessions. If gaining insight into the ecology of the investigated species is the prime objective and sufficient resources are available, the optimal plan should include two primary periods (in spring and the summerautumn season) of five capture sessions each. Capture sessions need to be separated by roughly 2-week intervals in order to avoid the strong, but short-term, negative effect of capturing crayfish on their recapture chances. As the model without heterogeneity in capture probabilities ensures better estimate precision we recommend that data collected for both sexes are analysed separately. Taking into consideration higher male catchabilities and sex ratio being invariably 1:1, it also seems beneficial to estimate only male numbers and double them to achieve total population sizes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.