Human C-tactile (CT) afferents respond vigorously to gentle skin stroking and have gained attention for their importance in social touch. Pharmacogenetic activation of the mouse CT equivalent has positively reinforcing, anxiolytic effects, suggesting a role in grooming and affiliative behavior. We recorded from single CT axons in human participants, using the technique of microneurography, and stimulated a unit's receptive field using a novel, computer-controlled moving probe, which stroked the skin of the forearm over five velocities (0.3, 1, 3, 10, and 30 cm s Ϫ1 ) at three temperatures (cool, 18°C; neutral, 32°C; warm, 42°C). We show that CTs are unique among mechanoreceptive afferents: they discharged preferentially to slowly moving stimuli at a neutral (typical skin) temperature, rather than at the cooler or warmer stimulus temperatures. In contrast, myelinated hair mechanoreceptive afferents proportionally increased their firing frequency with stroking velocity and showed no temperature modulation. Furthermore, the CT firing frequency correlated with hedonic ratings to the same mechano-thermal stimulus only at the neutral stimulus temperature, where the stimuli were felt as pleasant at higher firing rates. We conclude that CT afferents are tuned to respond to tactile stimuli with the specific characteristics of a gentle caress delivered at typical skin temperature. This provides a peripheral mechanism for signaling pleasant skin-to-skin contact in humans, which promotes interpersonal touch and affiliative behavior.
No comprehensive language exists that describes the experience of touch. Three experiments were conducted to take steps toward establishing a touch lexicon. In Experiment I, 49 participants rated how well 262 adjectives described sensory, emotional and evaluative aspects of touch. In Experiment II, participants rated pairwise dissimilarities of the most descriptive words of the set. Multidimensional scaling (MDS) solutions representing semanticperceptual spaces underlying the words resulted in a touch perception task (TPT) consisting of 26 'sensory' attributes (e.g., bumpiness) and 14 'emotional' attributes (e.g., pleasurable). In Experiment III, 40 participants used the TPT to rate unseen textured materials that were moved actively or received passively against the index fingerpad, volar forearm, and two underarm sites. MDS confirmed similar semantic-perceptual structures in Experiments II and III. Factor analysis of Experiment III data decomposed the sensory attribute ratings into factors labeled Roughness, Slip, Pile and Firmness, and the emotional attribute ratings into Comfort and Arousal factors. Factor scores varied among materials and sites. Greater intensity of sensory and emotional responses were reported when participants passively, as opposed to actively, received stimuli. The sensitivity of the TPT in identifying body site and mode of touch-related perceptual differences affirms the validity and utility of this novel linguistic/perceptual tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.