The causal role of somatic mutation and its interrelationship with gene expression profile during tumor development has already been observed, which plays a major role to decide the cancer grades and overall survival. Accurate and robust prediction of tumor grades and patients' overall survival are important for prognosis, risk factors identification and betterment of the treatment strategy, especially for highly lethal tumors, like gliomas. Here, with the help of more accurate and widely used machine learning-based approaches, we propose an integrative computational pipeline that incorporates somatic mutations and gene expression profile for survival and grade prediction of glioma patients and simultaneously relates it to the drugs to be administered. This study gives us a clear understanding that the same drug is not effective for the treatment of same grade of cancer if the gene mutations are different. The alteration in a specific gene plays a very important role in tumor progression and should also be considered for the selection of appropriate drugs. This proposed framework includes all the necessary factors required for enhancement of therapeutic designs and could be useful for clinicians in determining an accurate and personalized treatment strategy for individual patients suffering from different life threatening diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.