Sympatric divergent populations of the same species provide an opportunity to study the evolution and maintenance of reproductive isolation. Male mating calls are important in sexual selection in acoustically communicating species, and they also have the potential to maintain isolation among species or incipient species. We studied divergent south Indian populations of the bush cricket Mecopoda elongata which are extremely difficult to distinguish morphologically, but which exhibit striking divergence in male acoustic signals. We performed phonotactic experiments investigating the relative preference of females of the “Chirper” song type for calls of all 5 of the song types found in the region (in varying degrees of sympatry). We found that Chirper females preferred their own song type and were completely unresponsive to three trilling song types. Chirper females were occasionally attracted to the call type “Double Chirper” (the call most similar to their own type), suggesting call preference alone cannot provide a complete isolating mechanism. To investigate the basis of call preference we investigated the response of chirper females to variation in chirp rate. Chirper females responded most frequently to a mean chirp rate characteristic of their own song type rather than a higher chirp rate which would be more characteristic of the Double-Chirper song type. This suggests females drive stabilising selection on male chirp rate, which may contribute to the maintenance of isolation. Finally, a no-choice mating experiment using Chirper females and Chirper and Double Chirper males revealed a significant preference of Chirper females to mate with their own song type, even without a requirement for phonotaxis. Overall, the strong specificity of Chirper females for their ‘own’ song type provides evidence for behavioural isolation among divergent sympatric Mecopoda song types being maintained by female preference for both male song type and subsequent mating probability driven by other cues.
A well-established route to speciation in animals is via the evolution of divergent male mating signals and female preferences within a species. However, an open question is how common it is for near complete isolation to be achieved through a single signal-receiver system as opposed to multiple aspects of the mate-recognition system diverging simultaneously. The five highly divergent mate-attraction song types of the bush cricket Mecopoda elongata exemplify reproductive isolation in sympatry through long-distance mating signals. Female preference for their own song type has been established as a strong pre-mating reproductive barrier, but the potential existence of additional isolating mechanisms has not been investigated. We quantify divergence in cuticular lipid profiles and external genital structures between song types. These traits show significant variation among species of Orthoptera and are known to be used in mate recognition following contact. We show that divergence among sympatric Mecopoda song types in both cuticular lipid profiles and two external genital structures is sufficiently extensive that either of them can be used to identify individual song type with 90% accuracy. Our findings suggest that multiple isolating mechanisms are likely to evolve simultaneously facilitating a more robust reproductive isolation. Our study indicates a role for sexual selection in the divergence and potential future speciation of these populations and suggests that reproductive isolation may frequently evolve through simultaneous divergence across different aspects of mate recognition systems.
The bush cricket Mecopoda elongata provides a striking example of sympatric intraspecific divergence in mating signals. Five completely distinct song types are found in various parapatric and sympatric locations in South India. While there is convincing evidence that population divergence in M. elongata is being maintained as a result of divergence in acoustic signals, cuticular chemical profiles, and genital characters, the causes of the evolution of such divergence in the first place are unknown. We describe the discovery of a tachinid parasitoid with an orthopteroid hearing mechanism affecting M. elongata. This parasitoid may have a role in driving the extraordinary divergence that had occurred among M. elongata song types. Over two years we sampled individuals of three sympatric song types in the wild and retained individuals in captivity to reveal rates of parasitization. We found that all three song types were infected with the parasitoid but that there were significant differences among song types in their probability of being infected. The probability of tachinid parasitization also differed between the two sampling periods. Therefore, it is possible that parasitoid infection plays a role in song type divergence among sympatric bush cricket populations.
9The ability of sexual conflict to facilitate speciation has been widely anticipated in speciation 1 0 research. However, mathematical models based on mating rate predict only two scenarios sex ratio have shown that both premating and postmating-prezygotic isolation evolved in the form of precopulatory isolating mechanism since they evolve rapidly and are involved in 2 0 Drosophila mate recognition. We studied cuticular lipid divergence in the same Drosophila sexually dimorphic indicating past and/or ongoing sexually antagonistic coevolution. 3Although male biased replicates evolved isolation in reproductive traits due to high sexual 2 4 conflict, the patterns of cuticular lipid divergence in high and low sexual conflict regimes 2 5suggest that sexual selection is the dominant selection pressure rather than sexual conflict profiles among both sexes of male biased replicates, the divergence pattern is defined by 2 8 ancestry of the different replicates and cannot be unambiguously credited to sexual conflict.
Background: The ability of sexual conflict to facilitate reproductive isolation is widely anticipated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.