In the present work, a morphological and biometrical study of whipworms Trichuris Roederer, 1761 (Nematoda: Trichuridae) parasitizing Colobus guereza kikuyensis has been carried out. Biometrical and statistical data showed that the mean values of individual variables between Trichuris suis and Trichuris sp. from C. g. kikuyensis differed significantly (P < 0.001) when Student's t test was performed: seven male variables (width of esophageal region of body, maximum width of posterior region of body, width in the place of junction of esophagus and the intestine, length of bacillary stripes, length of spicule, length of ejaculatory duct, and distance between posterior part of testis and tail end of body) and three female variables (width of posterior region of body, length of bacillary stripes, and distance of tail end of body and posterior fold of seminal receptacle). The combination of these characters permitted the discrimination of T. suis with respect to Trichuris sp. from C. g. kikuyensis, suggesting a new species of Trichuris. Furthermore, males of Trichuris sp. from C. g. kikuyensis showed a typical subterminal pericloacal papillae associated to a cluster of small papillae that were absent in males of T. suis, while females of Trichuris from Colobus appeared with a vulval region elevated/over-mounted showing a crater-like appearance. The everted vagina showed typical triangular sharp spines by optical microscopy and SEM. Thus, the existence of a new species of Trichuris parasitizing C. g. kikuyensis has been proposed.
A molecular phylogenetic hypothesis is presented for the genus Trichuris based on sequence data from the mitochondrial cytochrome c oxidase 1 (cox1) and ribosomal 18S genes. The taxa consisted of different described species and several host-associated isolates (undescribed taxa) of Trichuris collected from hosts from Spain. Sequence data from mitochondrial cox1 (partial gene) and nuclear 18S near-complete gene were analyzed by maximum likelihood and Bayesian inference methods, as separate and combined datasets, to evaluate phylogenetic relationships among taxa. Phylogenetic results based on 18S ribosomal DNA (rDNA) were robust for relationships among species; cox1 sequences delimited species and revealed phylogeographic variation, but most relationships among Trichuris species were poorly resolved by mitochondrial sequences. The phylogenetic hypotheses for both genes strongly supported monophyly of Trichuris, and distinct genetic lineages corresponding to described species or nematodes associated with certain hosts were recognized based on cox1 sequences. Phylogenetic reconstructions based on concatenated sequences of the two loci, cox1 (mitochondrial DNA (mtDNA)) and 18S rDNA, were congruent with the overall topology inferred from 18S and previously published results based on internal transcribed spacer sequences. Our results demonstrate that the 18S rDNA and cox1 mtDNA genes provide resolution at different levels, but together resolve relationships among geographic populations and species in the genus Trichuris.
A phylogeographic study was carried out of Trichuris muris, nematode parasitizing Murinae rodents from the Muridae family, isolated from four different hosts and from different geographical regions of Europe by amplification and sequencing of the ITS1-5.8S-ITS2 fragment of the ribosomal DNA. T. muris was found in the Apodemus sylvaticus, Apodemus flavicollis, Mus domesticus, and Rattus rattus rodents. The molecular results confirm the presence of DNA polymorphisms among T. muris isolates from Europe. The present study shows two clear-cut geographical and genetic lineages: one of them is widespread from northern Spain (Catalonia) to Denmark (Western European region), while the second is widespread in the Eastern European region (Croatia, Rumania, and Turkey). These two genotypes can be easily distinguished by a PCR-RFLP analysis of this sequence with the ApalI restriction enzyme. Moreover, networks and phylogenetic reconstructions also reveal that T. muris from various Murinae rodents did not differentiate according to the host species that they parasitize. Furthermore, T. muris isolated from The Canary Islands revealed a typical haplotype (H6) only present in The Canary Islands and not in continental Europe. It is suggested that one haplotype from La Gomera Island is the ancestor of T. muris in the Canary Islands.
In the present work, a comparative morphological, biometrical and molecular study of Ctenocephalides spp. isolated from dogs (Canis lupus familiaris) from different geographical regions (Spain, Iran, and South Africa) has been carried out. The internal transcribed spacer 1 (ITS1) sequences of Ctenocephalides felis and Ctenocephalides canis collected from dogs from different geographical regions have been determined to clarify the taxonomic status of these species and to assess intraspecific variation and interspecific sequence differences. In addition, a phylogenetic analysis based on ITS1 sequences has been performed. Four different morphological populations were observed in the individuals of C. felis collected from dogs from different geographical locations. Nevertheless, the comparative study of the ITS1 sequences of the different morphological populations observed in C. felis did not show molecular differences. The results showed clear molecular differences between C. felis and C. canis and some specific recognition sites for endonucleases were detected between both species. Thus, BfrBI and DraI sites have diagnostic value for specific determination in C. felis. The phylogenetic tree based on the ITS1 sequences of C. felis and C. canis revealed that all the populations of C. felis from different geographical regions clustered together and separated, with high bootstrap values, from C. canis. We conclude that ITS1 region is a useful tool to approach different taxonomic and phylogenetic questions in Ctenocephalides species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.