We present a prototype task-parallel algorithm for the solution of hierarchical symmetric positive definite linear systems via the H -Cholesky factorization that builds upon the parallel programming standards and associated runtimes for OpenMP and OmpSs. In contrast with previous efforts, our proposal decouples the numerical aspects of the linear algebra operation from the complexities associated with high performance computing. Our experiments make an exhaustive analysis of the efficiency attained by different parallelization approaches that exploit either task-parallelism or loop-parallelism via a runtime. Alternatively, we also evaluate a solution that leverages multi-threaded parallelism via the parallel implementation of the Basic Linear Algebra Subroutines (BLAS) in Intel MKL.
We address the parallelization of the LU factorization of hierarchical matrices (H-matrices) arising from boundary element methods. Our approach exploits task-parallelism via the OmpSs programming model and runtime, which discovers the data-flow parallelism intrinsic to the operation at execution time, via the analysis of data dependencies based on the memory addresses of the tasks' operands. This is especially challenging for H-matrices, as the structures containing the data vary in dimension during the execution. We tackle this issue by decoupling the data structure from that used to detect dependencies. Furthermore, we leverage the support for weak operands and early release of dependencies, recently introduced in OmpSs-2, to accelerate the execution of parallel codes with nested task-parallelism and fine-grain tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.