Histological remission is evolving as an important treatment target in UC. We aimed to develop a simple histological index, aligned to endoscopy, correlated with clinical outcomes, and suited to apply to an artificial intelligence (AI) system to evaluate inflammatory activity.MethodsUsing a set of 614 biopsies from 307 patients with UC enrolled into a prospective multicentre study, we developed the Paddington International virtual ChromoendoScopy ScOre (PICaSSO) Histologic Remission Index (PHRI). Agreement with multiple other histological indices and validation for inter-reader reproducibility were assessed. Finally, to implement PHRI into a computer-aided diagnosis system, we trained and tested a novel deep learning strategy based on a CNN architecture to detect neutrophils, calculate PHRI and identify active from quiescent UC using a subset of 138 biopsies.ResultsPHRI is strongly correlated with endoscopic scores (Mayo Endoscopic Score and UC Endoscopic Index of Severity and PICaSSO) and with clinical outcomes (hospitalisation, colectomy and initiation or changes in medical therapy due to UC flare-up). A PHRI score of 1 could accurately stratify patients’ risk of adverse outcomes (hospitalisation, colectomy and treatment optimisation due to flare-up) within 12 months. Our inter-reader agreement was high (intraclass correlation 0.84). Our preliminary AI algorithm differentiated active from quiescent UC with 78% sensitivity, 91.7% specificity and 86% accuracy.ConclusionsPHRI is a simple histological index in UC, and it exhibits the highest correlation with endoscopic activity and clinical outcomes. A PHRI-based AI system was accurate in predicting histological remission.
Epigenetic alterations have an important role in the development of several types of cancer. Epigenetic studies generate a large amount of data, which makes it essential to develop novel models capable of dealing with large-scale data. In this work, we propose a deep embedded refined clustering method for breast cancer differentiation based on DNA methylation. In concrete, the deep learning system presented here uses the levels of CpG island methylation between 0 and 1. The proposed approach is composed of two main stages. The first stage consists in the dimensionality reduction of the methylation data based on an autoencoder. The second stage is a clustering algorithm based on the soft assignment of the latent space provided by the autoencoder. The whole method is optimized through a weighted loss function composed of two terms: reconstruction and classification terms. To the best of the authors’ knowledge, no previous studies have focused on the dimensionality reduction algorithms linked to classification trained end-to-end for DNA methylation analysis. The proposed method achieves an unsupervised clustering accuracy of 0.9927 and an error rate (%) of 0.73 on 137 breast tissue samples. After a second test of the deep-learning-based method using a different methylation database, an accuracy of 0.9343 and an error rate (%) of 6.57 on 45 breast tissue samples are obtained. Based on these results, the proposed algorithm outperforms other state-of-the-art methods evaluated under the same conditions for breast cancer classification based on DNA methylation data.
Nowadays, glaucoma is the leading cause of blindness worldwide. We propose in this paper two different deep-learningbased approaches to address glaucoma detection just from raw circumpapillary OCT images. The first one is based on the development of convolutional neural networks (CNNs) trained from scratch. The second one lies in fine-tuning some of the most common state-of-the-art CNNs architectures. The experiments were performed on a private database composed of 93 glaucomatous and 156 normal B-scans around the optic nerve head of the retina, which were diagnosed by expert ophthalmologists. The validation results evidence that finetuned CNNs outperform the networks trained from scratch when small databases are addressed. Additionally, the VGG family of networks reports the most promising results, with an area under the ROC curve of 0.96 and an accuracy of 0.92, during the prediction of the independent test set.
Optical coherence tomography (OCT) is a well-established bedside imaging modality that allows analysis of skin structures in a non-invasive way. Automated OCT analysis of skin layers is of great relevance to study dermatological diseases. In this paper, an approach to detect the epidermal layer along with the follicular structures in healthy human OCT images is presented. To the best of the authors' knowledge, the approach presented in this paper is the only epidermis detection algorithm that segments the pilosebaceous unit, which is of importance in the progression of several skin disorders such as folliculitis, acne, lupus erythematosus, and basal cell carcinoma. The proposed approach is composed of two main stages. The first stage is a Convolutional Neural Network based on U-Net architecture. The second stage is a robust post-processing composed by a Savitzky-Golay filter and Fourier Domain Filtering to fully define the borders belonging to the hair follicles. After validation, an average Dice of 0.83 ± 0.06 and a thickness error of 10.25 µm is obtained on 270 human skin OCT images. Based on these results, the proposed method outperforms other state-of-the-art methods for epidermis segmentation. It demonstrates that the proposed image segmentation method successfully detects the epidermal region in a fully automatic way in addition to defining the follicular skin structures as main novelty.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.