Until now, lead zirconate titanate (PZT) based ceramics are the most widely used in piezoelectric devices. However, the use of lead is being avoided due to its toxicity and environmental risks. Indeed, the attention in piezoelectric devices has been moved to lead-free ceramics, especially on (K,Na)NbO3-based materials, due to growing environmental concerns. Here we report a systematic evaluation of the effects of the compositional modifications induced by replacement of the B-sites with Sb(5+) ions in 0.96[(K0.48Na0.52)0.95Li0.05Nb1-xSbxO3]-0.04[BaZrO3] lead-free piezoceramics. We show that this compositional design is the driving force for the development of the high piezoelectric properties. So, we find that this phenomenon can be explained by the stabilization of a Rhombohedral-Tetragonal (R-T) phase boundary close to room temperature, that facilities the polarization process of the system and exhibits a significantly high piezoelectric response with a d33 value as high as ∼400 pC/N, which is comparable to part soft PZTs. As a result, we believe that the general strategy and design principles described in this study open the possibility of obtaining (K,Na)NbO3-based lead-free ceramics with enhanced properties, expanding their application range.
Lead zirconate titanate (PZT) based ceramics are currently enjoying a wide use in piezoelectric devices despite lead toxicity. Due to growing environmental concerns, the attention on piezoelectric ceramics has been moving to lead-free materials, in particular to (K,Na)NbO 3-based ceramics. Here we report a systematic evaluation of the effects of the compositional modifications on [(K0.44Na0.52Li0.04)[(Nb0.86Ta0.10Sb0.04)1-xZr5x/4]O3 lead-free piezoceramics. We show that an interrelationship between the intrinsic and extrinsic factors is the linchpin for the development of good piezoelectric properties. Hence, the stabilization of the tetragonal symmetry on the orthorhombic-tetragonal polymorphic phase boundary facilities the poling process of the system, thereby enhancing the piezoelectric response. Additionally, the microstructure appears to be related to the piezoelectric properties; i.e., the improved piezoelectric properties correlate to the increase in grain size. The results of this work could help to understand the origin of piezoelectricity in potassium-sodium niobate-based ceramics.
We report the results of an experimental study of thermal and magnetic properties of nanostructured ferrimagnetic iron oxide composites with graphene and graphite fillers synthesized via the current activated pressure assisted densification. The thermal conductivity was measured using the laser-flash and transient plane source techniques. It was demonstrated that addition of 5 wt. % of equal mixture of graphene and graphite flakes to the composite results in a factor of ×2.6 enhancement of the thermal conductivity without significant degradation of the saturation magnetization.The microscopy and spectroscopic characterization reveal that sp 2 carbon fillers preserve their crystal structure and morphology during the composite processing. The strong increase in the thermal conductivity was attributed to the excellent phonon heat conduction properties of graphene and graphite.The results are important for energy and electronic applications of the nanostructured permanent magnets. management 3 | P a g e
SrAl2O4:Eu(2+), Dy(3+) has been extensively studied for industrial applications in the luminescent materials field, because of its excellent persistent luminescence properties and chemical stability. Traditionally, this strontium aluminate material is synthesized in bulk form and/or fine powder by the classic solid-state method. Here, we report an original synthetic route, a molten salt assisted process, to obtain highly crystalline SrAl2O4 powder with nanometer-scale crystals. The main advantages of salt addition are the increase of the reaction rate and the significant reduction of the synthesis temperature because of much higher mobility of reactants in the liquid medium than in the solid-state method. In particular, the formation mechanism of SrAl2O4, the role of the salt, and the phase's evolution have been explored as a function of temperature and time. Phosphorescent powders based on SrAl2O4:Eu(2+), Dy(3+) with high crystallinity are obtained after 1 h treatment at 900 °C. This work could promote further interest in adopting the molten salt strategy to process high-crystallinity materials with enhanced luminescence to design technologically relevant phosphors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.