Myotonic dystrophy type 1 (DM1) is a multisystem genetic disorder caused by a triplet nucleotide repeat expansion in the 3' untranslated region of the Dystrophia Myotonica-Protein Kinase (DMPK) gene. DMPK gene transcripts containing CUG expanded repeats accumulate in nuclear foci and ultimately cause altered splicing/gene expression of numerous secondary genes. The study of primary cell cultures derived from patients with DM1 has allowed the identification and further characterization of molecular mechanisms underlying the pathology in the natural context of the disease. In this study we show for the first time impaired nuclear structure in fibroblasts of DM1 patients. DM1-derived fibroblasts exhibited altered localization of the nuclear envelope (NE) proteins emerin and lamins A/C and B1 with concomitant increased size and altered shape of nuclei. Abnormal NE organization is more common in DM1 fibroblasts containing abundant nuclear foci, implying expression of the expanded RNA as determinant of nuclear defects. That transient expression of the DMPK 3' UTR containing 960 CTG but not with the 3' UTR lacking CTG repeats is sufficient to generate NE disruption in normal fibroblasts confirms the direct impact of mutant RNA on NE architecture. We also evidence nucleoli distortion in DM1 fibroblasts by immunostaining of the nucleolar protein fibrillarin, implying a broader effect of the mutant RNA on nuclear structure. In summary, these findings reveal that NE disruption, a hallmark of laminopathy disorders, is a novel characteristic of DM1.
Oculopharyngeal muscular dystrophy (OPMD) is linked to mutations in the gene encoding poly(A)-binding protein nuclear 1 (PABPN1). OPMD mutations consist of an expansion of a tract that contains 10 alanines (to 12-17). This disease courses with muscle weakness that begins in adulthood, but the underlying mechanism is unclear. In the present study, we investigated the functional effects of PABPN1 and an OPMD mutation (PABPN1-17A) using myotubes transfected with cDNAs encoding these proteins (GFP-tagged). PABPN1 stimulated myoblast fusion (100%), whereas PABPN1-17A failed to mimic this effect. Additionally, the OPMD mutation markedly altered nuclear morphology; specifically, it led to nuclei with a more convoluted and ovoid shape. Although PABPN1 and PABPN1-17A modified the expression of sarcoplasmic/endoplasmic reticulum Ca -ATPase and calsequestrin, the corresponding changes did not have a clear impact on [Ca ]. Interestingly, neither L-type Ca channels, nor voltage-gated sarcoplasmic reticulum (SR) Ca release (VGCR) was altered by PABPN1. However, PABPN1-17A produced a selective inhibition of VGCR (50%). This effect probably arises from both lower expression of RyR1 and depletion of SR Ca . The latter, however, was not related to inhibition of store-operated Ca entry. Both PABPN1 constructs promoted a moderated decrease in cytosolic [Ca ], which apparently results from down-regulation of excitation-coupled Ca entry. On the other hand, PABPN1-17A did not alter ECC in muscle fibres, suggesting that adult muscle is less prone to developing deleterious effects. These results demonstrate that PABPN1 proteins regulate essential processes during myotube formation and support the notion that OPMD involves disruption of myogenesis, nuclear structure and homeostasis of Ca .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.