Plant ribosomal proteins play universal roles in translation, although they are also involved in developmental processes and hormone signaling pathways. Among Arabidopsis RPL10 family members, RPL10A exhibits the highest expression during germination and early development, suggesting that RPL10A is the main contributor to these processes. In this work, we first analyzed RPL10A expression pattern in Arabidopsis thaliana using transgenic RPL10Apro:GUS plants. The gene exhibits a ubiquitous expression pattern throughout the plant, but it is most strongly expressed in undifferentiated tissues. Interestingly, gene expression was also detected in stomatal cells. We then examined protein function during seedling establishment and abscisic acid (ABA) response. Heterozygous rpl10A mutant plants show decreased ABA-sensitivity during seed germination, are impaired in early seedling and root development, and exhibit reduced ABA-inhibition of stomatal aperture under light conditions. Overexpression of RPL10A does not affect the germination and seedling growth, but RPL10A-overexpressing lines are more sensitive to ABA during early plant development and exhibit higher stomatal closure under light condition both with and without ABA treatment than wild type plants. Interestingly, RPL10A expression is induced by ABA. Together, we conclude that RPL10A could act as a positive regulator for ABA-dependent responses in Arabidopsis plants.
Sudden death syndrome (SDS) of soybean is a fungal disease caused by at least four distinct Fusarium species: F. tucumaniae, F. virguliforme, F. brasiliense, and F. crassistipitatum. All four species are present in Argentina. These fungi are soilborne pathogens that only colonize roots and cause root necrosis. However, damage also reaches the aboveground part of the plant, and foliar chlorosis and necrosis, followed by premature defoliation, can be observed. Although the pathogenicity and phytotoxicity of F. virguliforme has been well characterized, knowledge regarding disease development by other fungal species is scarce. In this study, two plant species, soybean (Glycine max) and Arabidopsis thaliana, and isolates from two fungal species, F. tucumaniae and F. crassistipitatum, were used to comparatively analyse the fungal pathogenicity and the phytotoxicity of volatile organic compounds (VOCs) and cell‐free culture filtrates. Fungal inoculation had a significant effect on plant growth, regardless of the plant species. In addition, infected soybean plants showed disease incidence and foliar and root symptoms. Inhibition of A. thaliana growth was not due to VOCs emitted by fungi. Instead, both pathogens were shown to produce toxins that caused typical SDS foliar symptoms in soybean and root length reduction in A. thaliana. As far as we know, this is the first report that demonstrates that F. tucumaniae and F. crassistipitatum affect A. thaliana growth and emit VOCs, and that F. crassistipitatum produces toxins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.