The control of cell fate decisions is vital to build functional organs and maintain normal tissue homeostasis, and many pathways and processes cooperate to direct cells to an appropriate final identity. Because of its continuously renewing state and its carefully organised hierarchy, the mammalian intestine has become a powerful model to dissect these pathways in health and disease. One of the signalling pathways that is key to maintaining the balance between proliferation and differentiation in the intestinal epithelium is the Notch pathway, most famous for specifying distinct cell fates in adjacent cells via the evolutionarily conserved process of lateral inhibition. Here, we will review recent discoveries that advance our understanding of how cell fate in the mammalian intestine is decided by Notch and lateral inhibition, focusing on the molecular determinants that regulate protein turnover, transcriptional control and epigenetic regulation.
Caffeic acid phenethyl ester (CAPE), which is derived from the propolis of honeybee hives, has been shown to reveal anti-inflammatory properties. Since T-cells play a key role in the onset of several inflammatory diseases, we have evaluated the immunosuppressive activity of CAPE in human T-cells, discovering that this phenolic compound is a potent inhibitor of early and late events in T-cell receptor-mediated T-cell activation. Moreover, we found that CAPE specifically inhibited both interleukin (IL)-2 gene transcription and IL-2 synthesis in stimulated T-cells. To further characterize the inhibitory mechanisms of CAPE at the transcriptional level, we examined the DNA binding and transcriptional activities of nuclear factor (NF)-B, nuclear factor of activated cells (NFAT), and activator protein-1 (AP-1) transcription factors in Jurkat cells. We found that CAPE inhibited NF-B-dependent transcriptional activity without affecting the degradation of the cytoplasmic NF-B inhibitory protein, IB␣. However, both NF-B binding to DNA and transcriptional activity of a Gal4-p65 hybrid protein were clearly prevented in CAPE-treated Jurkat cells. Moreover, CAPE inhibited both the DNA-binding and transcriptional activity of NFAT, a result that correlated with its ability to inhibit phorbol 12-myristate 13-acetate plus ionomycin-induced NFAT1 dephosphorylation. These findings provide new insights into the molecular mechanisms involved in the immunomodulatory and anti-inflammatory activities of this natural compound.
AP-1 (activator protein 1) activity is strongly induced in response to numerous signals, including growth factors, cytokines and extracellular stresses. The proto-oncoprotein c-Jun belongs to the AP-1 group of transcription factors and it is a crucial regulator of intestinal progenitor proliferation and tumorigenesis. An important mechanism of AP-1 stimulation is phosphorylation of c-Jun by the Jun amino-terminal kinases (JNKs). N-terminal phosphorylation of the c-Jun transactivation domain increases target gene transcription, but a molecular explanation was elusive. Here we show that unphosphorylated, but not N-terminally phosphorylated c-Jun, interacts with Mbd3 and thereby recruits the nucleosome remodelling and histone deacetylation (NuRD) repressor complex. Mbd3 depletion in colon cancer cells increased histone acetylation at AP-1-dependent promoters, which resulted in increased target gene expression. The intestinal stem cell marker lgr5 was identified as a novel target gene controlled by c-Jun/Mbd3. Gut-specific conditional deletion of mbd3 (mbd3(ΔG/ΔG) mice) stimulated c-Jun activity and increased progenitor cell proliferation. In response to inflammation, mdb3 deficiency resulted in colonic hyperproliferation and mbd3(ΔG/ΔG) mice showed markedly increased susceptibility to colitis-induced tumorigenesis. Notably, concomitant inactivation of a single allele of c-jun reverted physiological and pathological hyperproliferation, as well as the increased tumorigenesis in mbd3(ΔG/ΔG) mice. Thus the transactivation domain of c-Jun recruits Mbd3/NuRD to AP-1 target genes to mediate gene repression, and this repression is relieved by JNK-mediated c-Jun N-terminal phosphorylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.