Communication based on autoinducer 2 (AI-2) is widespread among gram-negative and gram-positive bacteria, and the AI-2 pathway can control the expression of genes involved in a variety of metabolic pathways and pathogenic mechanisms. In the present study, we identified luxS, a gene responsible for the synthesis of AI-2, in Streptococcus gordonii, a major component of the dental plaque biofilm. S. gordonii conditioned medium induced bioluminescence in an AI-2 reporter strain of Vibrio harveyi. An isogenic mutant of S. gordonii, generated by insertional inactivation of the luxS gene, was unaffected in growth and in its ability to form biofilms on polystyrene surfaces. In contrast, the mutant strain failed to induce bioluminescence in V. harveyi and was unable to form a mixed species biofilm with a LuxS-null strain of the periodontal pathogen Porphyromonas gingivalis. Complementation of the luxS mutation in S. gordonii restored normal biofilm formation with the luxS-deficient P. gingivalis. Differential display PCR demonstrated that the inactivation of S. gordonii luxS downregulated the expression of a number of genes, including gtfG, encoding glucosyltransferase; fruA, encoding extracellular exo--D-fructosidase; and lacD encoding tagatose 1,6-diphosphate aldolase. However, S. gordonii cell surface expression of SspA and SspB proteins, previously implicated in mediating adhesion between S. gordonii and P. gingivalis, was unaffected by inactivation of luxS. The results suggest that S. gordonii produces an AI-2-like signaling molecule that regulates aspects of carbohydrate metabolism in the organism. Furthermore, LuxS-dependent intercellular communication is essential for biofilm formation between nongrowing cells of P. gingivalis and S. gordonii.It has long been recognized that bacteria can regulate gene expression in response to cell density, and quorum-sensing systems based on acylhomoserine lactone or peptide autoinducer (AI) molecules are widespread among gram-negative and gram-positive bacterial species, respectively. Cellular functions regulated by quorum sensing include the expression of virulence factors, competence for genetic transformation, conjugal DNA transfer, the production of antibiotics and secondary metabolites, and biofilm formation (14,16,48,69). More recently, a novel communication system was described in the marine bacterium Vibrio harveyi (61). Bioluminescence in V. harveyi is regulated by two distinct AI signaling molecules that are detected by independent signal transduction systems that subsequently converge in a common pathway to regulate gene expression (reviewed in reference 54). AI-1 is a well-characterized derivative of a homoserine lactone that is highly species specific for V. harveyi. In contrast, AI-2 is a furanosyl borate diester. AI-2 is formed chemically from 4,5-dihydroxy-2,3-pentanedione that is generated by the action of LuxS AI synthase on S-ribosylhomocysteine (8, 55). The luxS gene is highly conserved across a diverse range of gram-negative and gram-positive bacterial spe...
Streptococcus pneumoniae colonizes the nasopharynx in up to 40% of healthy subjects, and is a leading cause of middle ear infections (otitis media), meningitis and pneumonia. Pneumococci adhere to glycosidic receptors on epithelial cells and to immobilized fibronectin, but the bacterial adhesins mediating these reactions are largely uncharacterized. In this report we describe a novel pneumococcal protein PavA, which binds fibronectin and is associated with pneumococcal adhesion and virulence. The pavA gene, present in 64 independent isolates of S. pneumoniae tested, encodes a 551 amino acid residue polypeptide with 67% identical amino acid sequence to Fbp54 protein in Streptococcus pyogenes. PavA localized to the pneumococcal cell outer surface, as demonstrated by immunoelectron microscopy, despite lack of conventional secretory or cell‐surface anchorage signals within the primary sequence. Full‐length recombinant PavA polypeptide bound to immobilized human fibronectin in preference to fluid‐phase fibronectin, in a heparin‐sensitive interaction, and blocked binding of wild‐type pneumococcal cells to fibronectin. However, a C‐terminally truncated PavA′ polypeptide (362 aa residues) failed to bind fibronectin or block pneumococcal cell adhesion. Expression of pavA in Enterococcus faecalis JH2–2 conferred > sixfold increased cell adhesion levels to fibronectin over control JH2–2 cells. Isogenic mutants of S. pneumoniae, either abrogated in PavA expression or producing a 42 kDa C‐terminally truncated protein, showed up to 50% reduced binding to immobilized fibronectin. Inactivation of pavA had no effects on growth rate, cell morphology, cell‐surface physico‐chemical properties, production of pneumolysin, autolysin, or surface proteins PspA and PsaA. Isogenic pavA mutants of encapsulated S. pneumoniae D39 were approximately 104‐fold attenuated in virulence in the mouse sepsis model. These results provide evidence that PavA fibronectin‐binding protein plays a direct role in the pathogenesis of pneumococcal infections.
The highly conserved antigen I/II family of polypeptides produced by oral streptococci are believed to be colonization determinants and may mediate adhesion of bacterial cells to salivary glycoproteins absorbed to cells and tissues in the human oral cavity. Streptococcus gordonii is shown to express, on the cell surface, two antigen I/II polypeptides designated SspA and SspB (formerly Ssp-5) that are the products of tandemly arranged chromosomal genes. The structure and arrangement of these genes is similar in two independently isolated strains, DL1 and M5, of S. gordonii. The mature polypeptide sequences of M5 SspA (1539 amino acid (aa) residues) and SspB (1462 aa residues) are almost wholly conserved (98% identical) in the C-terminal regions (from residues 796 in SspA and 719 in SspB, to the respective C-termini), well-conserved (84%) at the N-terminal regions (residues 1-429), and divergent (only 27% identical residues) within the intervening central regions. Insertional inactivation of the sspA gene in S. gordonii DL1 resulted in reduced binding of cells to salivary agglutinin glycoprotein (SAG), human erythrocytes, and to the oral bacterium Actinomyces naeslundii. Further reductions in streptococcal cell adhesion to SAG and to two strains of A. naeslundii were observed when both sspA and sspB genes were inactivated. The results suggest that both SspA and SspB polypeptides are involved in adhesion of S. gordonii cells to human and bacterial receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.