The brain is believed to implement probabilistic reasoning and to represent information via population, or distributed, coding. Most previous population-based probabilistic (PPC) theories share several basic properties: 1) continuous-valued neurons (units); 2) fully/densely-distributed codes, i.e., all/most coding units participate in every code; 3) graded synapses; 4) rate coding; 5) units have innate unimodal, e.g., bellshaped, tuning functions (TFs); 6) units are intrinsically noisy; and 7) noise/correlation is generally considered harmful. We present a radically different theory that assumes: 1) binary units; 2) only a small subset of units, i.e., a sparse distributed code (SDC) (a.k.a. cell assembly, ensemble), comprises any individual code; 3) binary synapses; 4) signaling formally requires only single, i.e., first, spikes; 5) units initially have completely flat TFs (all weights zero); 6) units are not inherently noisy; but rather 7) noise is a resource generated/used to cause similar inputs to map to similar codes, controlling a tradeoff between storage capacity and embedding the input space statistics in the pattern of intersections over stored codes, indirectly yielding correlation patterns. The theory, Sparsey, was introduced 20 years ago as a canonical cortical circuit/algorithm model of efficient, generic spatiotemporal pattern learning/recognition, but it was not elaborated as an alternative to PPC-type theories. Here, we provide simulation results showing that the active SDC simultaneously represents not only the spatially/spatiotemporally most similar/likely input but the coarsely-ranked similarity/likelihood distribution over all stored inputs (hypotheses). Crucially, Sparsey's code selection algorithm (CSA), used for both learning and inference, achieves this with a single pass over the weights for each successive item of a sequence, thus performing learning and probabilistic inference for spatiotemporal patterns with a number of steps that remains constant for the life of the system, i.e., as the number of stored items increases. We also discuss our approach as a radically new implementation of graphical probability modeling.
There is increasing realization in neuroscience that information is represented in the brain, e.g., neocortex, hippocampus, in the form sparse distributed codes (SDCs), a kind of cell assembly. Two essential questions are: a) how are such codes formed on the basis of single trials, and how is similarity preserved during learning, i.e., how do more similar inputs get mapped to more similar SDCs. I describe a novel Modular Sparse Distributed Code (MSDC) that provides simple, neurally plausible answers to both questions. An MSDC coding field (CF) consists of Q WTA competitive modules (CMs), each comprised of K binary units (analogs of principal cells). The modular nature of the CF makes possible a single-trial, unsupervised learning algorithm that approximately preserves similarity and crucially, runs in fixed time, i.e., the number of steps needed to store an item remains constant as the number of stored items grows. Further, once items are stored as MSDCs in superposition and such that their intersection structure reflects input similarity, both fixed time best-match retrieval and fixed time belief update (updating the probabilities of all stored items) also become possible. The algorithm’s core principle is simply to add noise into the process of choosing a code, i.e., choosing a winner in each CM, which is proportional to the novelty of the input. This causes the expected intersection of the code for an input, X, with the code of each previously stored input, Y, to be proportional to the similarity of X and Y. Results demonstrating these capabilities for spatial patterns are given in the appendix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.