Multiphase machines have attracted the attention of the research and industrial communities due to their advantages, namely better power distribution and fault-tolerant capabilities without extra hardware. However, the multiphase machine requires high-performance control strategies to take advantage of these features. From this perspective, the field-oriented control with the inner current control loop that uses using an explicit modulation stage has been considered the benchmark solution thanks to the reduced harmonic distortion obtained with this regulation strategy. Nevertheless, nonlinear controllers, thanks to their inherent nature, allow exploiting the extra multiphase capabilities in a simplified manner. Consequently, this paper aims to concentrate and discuss the latest developments on nonlinear current control of two of the most popular multiphase electric drive configurations, five-phase and six-phase. Then, this paper covers mainly finite-control-set model predictive control and their variations. Moreover, sliding-mode control is also explained. Finally, this paper includes experimental assessments of the most recent nonlinear current control techniques considering steady-state and transient conditions, stability and performance analysis.
The development of new control techniques for multiphase induction machines (IMs) has become a point of great interest to exploit the advantages of these machines compared to three-phase topology, for example, the reduced phase currents and lower harmonic contents. One of the most analyzed techniques is the model-based predictive current control (MPC) with a finite control set. This technique presents high x–y currents because of the application of one switching state throughout the whole sampling period. Nevertheless, it is one of the most used due to its excellent dynamic response. To overcome the aforementioned drawbacks, new techniques called virtual vectors have been developed, but although there are several articles with experimental results, the algorithm for implementing the technique has not been appropriately described. This document provides a clear and detailed explanation for algorithm implementation of virtual vectors through two proposed variants VV4 and VV11, in a six-phase machine drive. The first entails lower computational cost and the second lower loss in the x–y plane. According to performance indicators such as the total harmonic distortion and the mean square error for both case studies, experimental tests were evaluated to determine the implementation’s behaviour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.