We present the design of novel solid electrolytes using tapered block polymers (TBPs). In this work, we synthesize a series of TBPs via atom transfer radical polymerization (ATRP) consisting of rigid polystyrene and ion-conducting poly(oligo-oxyethylene methacrylate) segments and explore the role of tapered interfaces on ion transport. Previous studies on TBPs have shown that manipulating the taper composition in block polymers can reduce the unfavorable polymer-polymer interactions between blocks, enabling the design for highly-processable (lower order-disorder transition temperature) polymer electrolytes. Herein, we demonstrate that the taper profile and taper volume fraction significantly impact the glass transition temperatures (T g s) in block polymer electrolytes, thus affecting the ionic conductivity. Additionally, we find that the normal-tapered materials with z60 vol% tapering exhibit remarkable improvements in ionic conductivity (increase z190% at 20 C and increase z90% at 80 C) in comparison to their non-tapered counterparts. Overall, our TBPs, with controllable interfacial interactions, present an exciting opportunity for the fabrication of cost-effective, highly-efficient, and stable energy storage membranes.
Tapered block polymers are an emerging class of macromolecules with unique and diverse self-assembly behavior and properties. Herein, we directly examine the manipulation of self-assembled interfaces in poly(isoprene-b-styrene) (I-S)-based block polymers (BPs) by synthesizing non-tapered (I-S), normal tapered (I-IS-S), and inverse tapered (I-SI-S) BPs with controlled monomer segment distributions. We provide the first direct measurements of interfacial mixing for these tapered polymers through X-ray reflectivity (XRR). The density profiles from XRR are compared to results from fluids density functional theory (fDFT) with good agreement. We find that our normal tapered BPs (30 vol % tapering) have similar interfacial mixing to diblock polymers, while our inverse tapered BPs (30 vol % tapering) have much wider interfaces. Additionally, differential scanning calorimetry (DSC) studies elucidate the influence of tapering on the glass transition temperature (T g) and change of heat capacity (ΔC P ) for each BP phase, and quantitative analysis from ΔC P also indicates enhanced mixing in the inverse tapered I-SI-S BPs. Finally, we investigate the free surface morphologies of these tapered polymers in thin film geometries. The inverse tapered BP form larger island/hole structures likely due to decreased surface elasticity from mixing as a result of the modified interblock interfacial characteristics. These results demonstrate that BPs with similar molecular weights and compositions can exhibit different thermodynamic properties and free surface morphologies in thin film geometries, as influenced by monomer sequence.
High molecular weight multiblock copolymers are synthesized as robust polymer fibers via interfacial bioorthogonal polymerization employing the rapid cycloaddition of s-tetrazines with strained trans-cyclooctenes. When cell-adhesive peptide was incorporated in the tetrazine monomer, the resulting protein-mimetic polymer fibers provide guidance cues for cell attachment and elongation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.