This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Background Children’s BMI gain accelerates during summer. The Structured Days Hypothesis posits that the lack of the school day during summer vacation negatively impacts children’s obesogenic behaviors (i.e., physical activity, screen time, diet, sleep). This natural experiment examined the impact of summer vacation on children’s obesogenic behaviors and body mass index (BMI). Methods Elementary-aged children (n = 285, 5-12 years, 48.7% male, 57.4% African American) attending a year-round (n = 97) and two match-paired traditional schools (n = 188) in the United States participated in this study. Rather than taking a long break from school during the summer like traditional schools, year-round schools take shorter and more frequent breaks from school. This difference in school calendars allowed for obesogenic behaviors to be collected during three conditions: Condition 1) all children attend school, Condition 2) year-round children attend school while traditional children were on summer vacation, and Condition 3) summer vacation for all children. Changes in BMI z-score were collected for the corresponding school years and summers. Multi-level mixed effects regressions estimated obesogenic behaviors and monthly zBMI changes. It was hypothesized that children would experience unhealthy changes in obesogenic behaviors when entering summer vacation because the absence of the school day (i.e., Condition 1 vs. 2 for traditional school children and 2 vs. 3 for year-round school children). Results From Condition 1 to 2 traditional school children experienced greater unhealthy changes in daily minutes sedentary (∆ = 24.2, 95CI = 10.2, 38.2), screen time minutes (∆ = 33.7, 95CI = 17.2, 50.3), sleep midpoint time (∆ = 73:43, 95CI = 65:33, 81:53), and sleep efficiency percentage (−∆ = 0.7, 95CI = -1.1, − 0.3) when compared to year-round school children. Alternatively, from Condition 2 to 3 year-round school children experienced greater unhealthy changes in daily minutes sedentary (∆ = 54.5, 95CI = 38.0, 70.9), light physical activity minutes (∆ = − 42.2, 95CI = -56.2, − 28.3) MVPA minutes (∆ = − 11.4, 95CI = -3.7, − 19.1), screen time minutes (∆ = 46.5, 95CI = 30.0, 63.0), and sleep midpoint time (∆ = 95:54, 95CI = 85:26, 106:22) when compared to traditional school children. Monthly zBMI gain accelerated during summer for traditional (∆ = 0.033 95CI = 0.019, 0.047) but not year-round school children (∆ = 0.004, 95CI = -0.014, 0.023). Conclusions This study suggests that the lack of the school day during summer vacation negatively impacts sedentary behaviors, sleep timing, and screen time. Changes in sedentary behaviors, screen time, and sleep midpoint may contribute to accelerated summer BMI gain. Providing structured programming during summer vacation may positively impact these behaviors, and in turn, mitigate accelerated summer BMI gain. Trial registration ClinicalTrials.gov Identifier: NCT03397940. Registered January 12th 2018.
Background: Children from low-income families experience accelerated BMI gain and learning loss during summer. Healthy Summer Learners (HSL) addresses accelerated BMI gain and academic learning loss during summer by providing academic-and health-focused programming. This manuscript reports the effects of HSL on underlying obesogenic behaviors (i.e., physical activity, screen time, sleep, diet) that lead to accelerated summer BMI gain, a necessary first step to informing a future randomized controlled trial of HSL. Methods: In the summer of 2018 and 2019 using a quasi-experimental study design, 180 children (90 per summer, 7.9 years [SD = 1.0], 94% non-Hispanic Black, 40% male) at two schools (i.e., one per summer) who were struggling academically (25-75% on a standardized reading test) were provided a free, school-based 6-week health-and academic-focused summer program (i.e., HSL, n = 60), a 4-to 6-week academic-focused summer program (i.e., 21st Century Summer Learning program (21C), n = 60), or no summer program (n = 60). Children wore the Fitbit Charge 2™ over a 10-week period during the summers (June-Aug) of 2018-2019. Differences within (within child days attend vs. not attend) and between (differences between groups attend vs. not attend) were evaluated using mixed effects linear regression. Results: Regression estimates indicated that, on days attending, HSL children experienced a greater reduction in sedentary minutes (− 58.6 [95% CI = − 92.7, − 24.4]) and a greater increase in moderate-to-vigorous physical activity (MVPA) (36.2 [95% CI = 25.1, 47.3]) and steps (2799.2 [95% CI = 2114.2, 3484.2]) compared to 21C children. However, both HSL and 21C children were more active (i.e., greater MVPA, total steps) and less sedentary (i.e., less sedentary minutes and total screen time) and displayed better sleeping patterns (i.e., earlier and less variability in sleep onset and offset) on days they attended than children in the control.
Objective: Children who fail to meet activity, sleep, and screen-time guidelines are at increased risk for obesity. Further, children who are Black are more likely to have obesity when compared to children who are White, and children from low-income households are at increased risk for obesity when compared to children from higher-income households. The objective of this study was to evaluate the proportion of days meeting obesogenic behavior guidelines during the school year compared to summer vacation by race and free/reduced priced lunch (FRPL) eligibility. Methods: Mixed-effects linear and logistic regressions estimated the proportion of days participants met activity, sleep, and screen-time guidelines during summer and school by race and FRPL eligibility within an observational cohort sample. Results: Children (n = 268, grades = K − 4, 44.1%FRPL, 59.0% Black) attending three schools participated. Children's activity, sleep, and screen-time were collected during an average of 23 school days and 16 days during summer vacation. During school, both children who were White and eligible for FRPL met activity, sleep, and screen-time guidelines on a greater proportion of days when compared to theirBlack and non-eligible counterparts. Significant differences in changes from school to summer in the proportion of days children met activity (−6.2%, 95CI = −10.1%, −2.3%; OR = 0.7, 95CI = 0.6, 0.9) and sleep (7.6%, 95CI = 2.9%, 12.4%; OR = 2.1, 95CI = 1.4, 3.0) guidelines between children who were Black and White were observed. Differences in changes in activity (−8.5%, 95CI = −4.9%, −12.1%; OR = 1.5, 95CI = 1.3, 1.8) were observed between children eligible versus uneligible for FRPL.Conclusions: Summer vacation may be an important time for targeting activity and screen-time of children who are Black and/or eligible for FRPL.This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.