Bumblebees are major pollinators of crops and wildflowers in northern temperate regions. Knowledge of their ecology is vital for the design of effective management and conservation strategies but key aspects remain poorly understood. Here we employed microsatellite markers to estimate and compare foraging range and nest density among four UK species: Bombus terrestris, Bombus pascuorum, Bombus lapidarius, and Bombus pratorum. Workers were sampled along a 1.5-km linear transect across arable farmland. Eight or nine polymorphic microsatellite markers were then used to identify putative sisters. In accordance with previous studies, minimum estimated maximum foraging range was greatest for B. terrestris (758 m) and least for B. pascuorum (449 m). The estimate for B. lapidarius was similar to B. pascuorum (450 m), while that of B. pratorum was intermediate (674 m). Since the area of forage available to bees increases as the square of foraging range, these differences correspond to a threefold variation in the area used by bumblebee nests of different species. Possible explanations for these differences are discussed. Estimates for nest density at the times of sampling were 29, 68, 117, and 26/km2 for B. terrestris, B. pascuorum, B. lapidarius and B. pratorum, respectively. These data suggest that even among the most common British bumblebee species, significant differences in fundamental aspects of their ecology exist, a finding that should be reflected in management and conservation strategies.
Summary 1.Foraging range is a key aspect of the ecology of 'central place foragers'. Estimating how far bees fly under different circumstances is essential for predicting colony success, and for estimating bee-mediated gene flow between plant populations. It is likely to be strongly influenced by forage distribution, something that is hard to quantify in all but the simplest landscapes; and theories of foraging distance tend to assume a homogeneous forage distribution. 2. We quantified the distribution of bumblebee Bombus terrestris L. foragers away from experimentally positioned colonies, in an agricultural landscape, using two methods. We massmarked foragers as they left the colony, and analysed pollen from foragers returning to the colonies. The data were set within the context of the 'forage landscape': a map of the spatial distribution of forage as determined from remote-sensed data. To our knowledge, this is the first time that empirical data on foraging distances and forage availability, at this resolution and scale, have been collected and combined for bumblebees. 3. The bees foraged at least 1·5 km from their colonies, and the proportion of foragers flying to one field declined, approximately linearly, with radial distance. In this landscape there was great variation in forage availability within 500 m of colonies but little variation beyond 1 km, regardless of colony location. 4. The scale of B. terrestris foraging was large enough to buffer against effects of forage patch and flowering crop heterogeneity, but bee species with shorter foraging ranges may experience highly variable colony success according to location.
Summary Bumblebees provide an important pollination service to both crops and wild plants. Many species have declined in the UK, particularly in arable regions. While bumblebee forage requirements have been widely studied, there has been less consideration of whether availability of nesting sites is limiting. It is important to know which habitats contain the most bumblebee nests per unit area in order to guide conservation and management options; particularly in the light of current emphasis on environmental stewardship schemes for farmed landscapes. However, it is extremely difficult to map the distribution of bumblebee nests. We describe the findings of the National Bumblebee Nest Survey, a structured survey carried out by 719 volunteers in the UK during early summer 2004. The surveyors used a defined protocol to record the presence or absence of bumblebee nests in prescribed areas of gardens, short grassland, long grassland and woodland, and along woodland edge, hedgerows and fence lines. The records allowed us to estimate the density of bumblebee nests in each of these habitats for the first time. Nest densities were high in gardens (36 nests ha−1), and linear countryside habitats (fence lines, hedgerows, woodland edge: 20–37 nests ha−1), and lower in non‐linear countryside habitats (woodland and grassland: 11–15 nests ha−1). Findings on nest location characteristics corroborate those of an earlier survey carried out in the UK (Fussell & Corbet 1992). Synthesis and applications. Gardens provide an important nesting habitat for bumblebees in the UK. In the countryside, the area occupied by linear features is small compared with that of non‐linear features. However, as linear features contain high densities of nests, management options affecting such features may have a disproportionately large effect on bumblebee nesting opportunities. Current farm stewardship schemes in the UK are therefore likely to facilitate bumblebee nesting, because they provide clear guidance and support for ‘sympathetic’ hedgerow and field margin management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.