A transient two‐dimensional thermal model for resistance welding of thermoplastic composites is presented. A parametric study is conducted that yields insight into the welding process enabling some critical process and material parameters to be identified. Time to melt is predicted by the model and is successfully compared to experimental observations. Local heating and meltthrough can also be explained by the transient thermal model in agreement with experimental observations. Mode I fracture toughness of unidirectional graphite reinforced poly(etheretherketone) resistance welded double cantilever beam specimens are conducted under various process conditions. Experimental results indicate that under optimum process conditions, the interlaminar fracture toughness of the bulk compression‐molded thermoplastic composite material can be achieved using resistance heating as a joining technique.
A study to investigate fusion bonding (welding) of AS4 graphite/polyetheretherketone (PEEK) thermoplastic composites is presented. Processing studies are conducted for resistance welding preconsolidated AS4/PEEK laminates in both unidirectional and quasi‐isotropic configurations using PEEK and polyetherimide (PEI) film at the joint interface. All bonding was done under a constant displacement process. The influence of processing time, initially applied consolidation pressure, and the rate of heat generation on weld performance is examined through lap shear and Mode I interlaminar fracture toughness testing. A rapid increase in strength with processing time that asymptotically approaches the compression molded baseline is measured. Weld times for quasi‐isotropic lap shear coupons are significantly shorter than those with a unidirectional lay‐up. Variation of the initially applied consolidation pressure is shown to have little influence on the lap shear strength of PEEK film welded lap joints. A discussion of the mechanisms allowing void formation during the welding process is given. Bond strength test results are correlated with ultrasonic C‐scans of the weld regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.