Infection rate among intravenous drug users (IDU) is higher than the general public, and is the major cause of morbidity and hospitalization in the IDU population. Epidemiologic studies provide data on increased prevalence of opportunistic bacterial infections such as TB and pneumonia, and viral infections such as HIV-1 and hepatitis in the IDU population. An important component in the intravenous drug abuse population and in patients receiving medically indicated chronic opioid treatment is opioid withdrawal. Data on bacterial virulence in the context of opioid withdrawal suggest that mice undergoing withdrawal had shortened survival and increased bacterial load in response to Salmonella infection. As the body of evidence in support of opioid dependency and its immunosuppressive effects is growing, it is imperative to understand the mechanisms by which opioids exert these effects and identify the populations at risk that would benefit the most from the interventions to counteract opioid immunosuppressive effects. Thus, it is important to refine the existing animal model to closely match human conditions and to cross-validate these findings through carefully controlled human studies. Better understanding of the mechanisms will facilitate the search for new therapeutic modalities to counteract adverse effects including increased infection rates. This review will summarize the effects of morphine on innate and adaptive immunity, identify the role of the mu opioid receptor in these functions and the signal transduction activated in the process. The role of opioid withdrawal in immunosuppression and the clinical relevance of these findings will also be discussed.
Opiates are among the most prescribed drugs for pain management. However, morphine use or abuse results in significant gut bacterial translocation and predisposes patients to serious infections with gut origin. The mechanism underlying this defect is still unknown. In this report, we investigated the mechanisms underlying compromised gut immune function and bacterial translocation following morphine treatment. We demonstrate significant bacterial translocation to mesenteric lymph node (MLN) and liver following morphine treatment in wild-type (WT) animals that was dramatically and significantly attenuated in Toll-like receptor (TLR2 and 4) knockout mice. We further observed significant disruption of tight junction protein organization only in the ileum but not in the colon of morphine treated WT animals. Inhibition of myosin light chain kinase (MLCK) blocked the effects of both morphine and TLR ligands, suggesting the role of MLCK in tight junction modulation by TLR. This study conclusively demonstrates that morphine induced gut epithelial barrier dysfunction and subsequent bacteria translocation are mediated by TLR signaling and thus TLRs can be exploited as potential therapeutic targets for alleviating infections and even sepsis in morphine-using or abusing populations.
Chronic morphine use impairs host innate immune response and increases susceptibility to bacteria and virus. In this study a novel mouse model of chronic morphine treatment, followed by intranasal inoculation with Streptococcus pneumoniae, was used to investigate microbial events and host innate immune response. Our results show that chronic morphine treatment markedly delayed neutrophil recruitment and increased bacterial burden in the lung, spleen, and blood with a subsequent increase in mortality. In morphine-treated animals, before neutrophil recruitment, a significant decrease in TNF-α, IL-1, IL-6, MIP-2, and KC was observed both in bronchoalveolar lavage fluids and in lung tissue. In the early phase of infection, we found that accumulation of galectin-3 in the alveolar space of streptococcus-infected lungs was decreased after morphine treatment. The transcription factor NF-κB in lung resident cells was also inhibited after morphine treatment. Taken together, these results suggest that chronic morphine treatment in an S. pneumoniae infection model suppresses NF-κB gene transcription in lung resident cells, which, in turn, modulates the transcriptional regulation of MIP-2 and inflammatory cytokines. The decreased synthesis of MIP-2 and inflammatory cytokines coupled with the decreased release of galectin-3 result in reduced migration of neutrophils to the site of infection, thereby increasing susceptibility to S. pneumoniae infection after morphine treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.