Los Alamos National Laboratory, an affirmative action/equal opportunity empldjter, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-38. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Form No. 836 R5 ST2629 10/91 DISCZAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, Tocorn-men&tion. or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. these anisotropy values indicate that the vertical Vp and Vs are larger than the horizontal, they are surjxking for this well bedded formation. Single-event focal mechanisms could be determined for 47 of the microearthquakes, and all are shear slip type. They show a large range of mechanisms, ranging from normal to reverse slip. Normal or oblique-normal slip predominant, though, with T (tensional) axes generally nearly horizontal and approximately N-S.
The effect of path on regional seismic wave propagation can be significant. In an effort to improve discriminant performance, we explore the effect of path upon Pg/Lg ratios. Our primary objective is to find path corrections that reduce scatter within earthquake and explosion ratio populations, while at the same time increasing the separation between the two populations. We emphasize the 1.5- to 3-Hz and 2- to 4-Hz bands, as Pg and Lg in these bands can often be observed at smaller magnitudes and greater distances than higher-frequency bands, which have previously been shown to be reliable discriminants. For data, we use 271 earthquakes from northwest China, 25 nuclear explosions from the Kazakh test site (KTS), and one nuclear explosion from the Lop Nor test site recorded at station WMQ. We also use 185 earthquakes from the same region and seven nuclear explosion from the Lop Nor test site recorded at station AAK. Event-station distances range from 200 to 1400 km, earthquake magnitudes range between mb 2.5 and 6.2, and explosion magnitudes range between mb 4.5 and 6.5. In addition to ratio-distance trends, we examine Pg/Lg ratio-parameter trends related to topography, basin thickness, and crustal thickness. The parameters we consider are mean, roughness, gradient mean, and gradient roughness of the topography, basin thickness, and crustal thickness along each event-station path. We also consider the same parameters after weighting by path length. Through linear regressions, we found path corrections that reduce scatter within event populations, and we also found path corrections that increase the separation between earthquakes and KTS explosions recorded at WMQ. We obtained the best improvement in discrimination performance at WMQ by removing the trends of topography roughness, mean topography, and the gradient of basin thickness after weighting the parameters by path length. For AAK, we found that removing the trends of mean topography and the basement roughness improved discrimination performance over the uncorrected case. However, unlike WMQ, weighting these parameters by path length degraded discriminant performance. Because we see no predictable or repeatable trends for “adjacent” central Asian stations and overlapping regions of interest, we recommend an even more empirical approach to correcting for the effect of path. Where earthquakes are abundant, such as the Tian Shan, contouring a grid of ratio residuals (for each band of interest) may be a simpler method of finding appropriate path corrections.
Se adicionó Pseudomona aeruginosa y Pseudomona fluorescens a agua residual de procedencia urbana para determinar la capacidad de reducción de sólidos suspendidos mediante ensayo de laboratorio en tres tratamientos y tres repeticiones en la unidad de investigación microbiológica del CRU-Azuero en junio de 2017, se encontró que, P. aeruginosa disminuyó la concentración de sólidos disueltos de 1,24 g (control) a 0,03g, y la conductividad a 235 μS/cm, en mayor proporción que P. fluorescens y cultivo mixto, observado a través de los valores obtenidos en los 5 días de tratamiento. De esta manera se estima que P. aeruginosa resulta efectiva en la biorremediacion de aguas residuales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.