BackgroundAlthough arctic lakes have responded sensitively to 20th-century climate change, it remains uncertain how these ecological transformations compare with alpine and montane-boreal counterparts over the same interval. Furthermore, it is unclear to what degree other forcings, including atmospheric deposition of anthropogenic reactive nitrogen (Nr), have participated in recent regime shifts. Diatom-based paleolimnological syntheses offer an effective tool for retrospective assessments of past and ongoing changes in remote lake ecosystems.Methodology/Principal FindingsWe synthesized 52 dated sediment diatom records from lakes in western North America and west Greenland, spanning broad latitudinal and altitudinal gradients, and representing alpine (n = 15), arctic (n = 20), and forested boreal-montane (n = 17) ecosystems. Diatom compositional turnover (β-diversity) during the 20th century was estimated using Detrended Canonical Correspondence Analysis (DCCA) for each site and compared, for cores with sufficiently robust chronologies, to both the 19th century and the prior ∼250 years (Little Ice Age). For both arctic and alpine lakes, β-diversity during the 20th century is significantly greater than the previous 350 years, and increases with both latitude and altitude. Because no correlation is apparent between 20th-century diatom β-diversity and any single physical or limnological parameter (including lake and catchment area, maximum depth, pH, conductivity, [NO3 −], modeled Nr deposition, ambient summer and winter air temperatures, and modeled temperature trends 1948–2008), we used Principal Components Analysis (PCA) to summarize the amplitude of recent changes in relationship to lake pH, lake:catchment area ratio, modeled Nr deposition, and recent temperature trends.Conclusions/SignificanceThe ecological responses of remote lakes to post-industrial environmental changes are complex. However, two regions reveal concentrations of sites with elevated 20th-century diatom β-diversity: the Arctic where temperatures are increasing most rapidly, and mid-latitude alpine lakes impacted by high Nr deposition rates. We predict that remote lakes will continue to shift towards new ecological states in the Anthropocene, particularly in regions where these two forcings begin to intersect geographically.
The rate of bitumen extraction in northeastern Alberta, Canada, is outpacing the state of ecological understanding of the region, so that the extent of potential disturbances caused by atmospheric deposition remains largely unknown. Atmospheric SO2 emissions from the Fort McMurray region of Alberta (∼300 t·day–1) constitute ∼5% of the Canadian total. Combined with an estimated NOx production of ∼300 t·day–1, these emissions have the potential to acidify surface waters. Diatom assemblages in dated sediment cores from eight acid-sensitive lakes were analyzed to assess the effects of acidifying emissions on boreal lake ecosystems. There is no evidence that these lakes have become acidified. Instead, many of the lakes show characteristic changes towards greater productivity and occasionally greater alkalinity. The absence of evidence for acidification does not imply that emissions from the Oil Sands are environmentally benign, but rather suggests that the biogeochemistry of these lakes differs fundamentally from well-studied acidified counterparts in northern Europe and eastern North America. Complex interactions involving in-lake alkalinity production, internal nutrient loading, and climate change appear to be driving these lakes towards the new ecological states reported.
We synthesize the information available from the peer‐reviewed literature on the ecological status of lakes and rivers in the oil sands region (OSR) of Canada. The majority of the research from the OSR has been performed in or near the minable region and examines the concentrations, flux, or enrichment of contaminants of concern (CoCs). Proximity to oil sands facilities and the beginning of commercial activities tend to be associated with greater estimates of CoCs across studies. Research suggests the higher measurements of CoCs are typically associated with wind‐blown dust, but other sources also contribute. Exploratory analyses further suggest relationships with facility production and fuel use data. Exceedances of environmental quality guidelines for CoCs are also reported in lake sediments, but there are no indications of toxicity including those within the areas of the greatest atmospheric deposition. Instead, primary production has increased in most lakes over time. Spatial differences are observed in streams, but causal relationships with industrial activity are often confounded by substantial natural influences. Despite this, there may be signals associated with site preparation for new mines, potential persistent differences, and a potential effect of petroleum coke used as fuel on some indices of health in fish captured in the Steepbank River. There is also evidence of improvements in the ecological condition of some rivers. Despite the volume of material available, much of the work remains temporally, spatially, or technically isolated. Overcoming the isolation of studies would enhance the utility of information available for the region, but additional recommendations for improving monitoring can be made, such as a shift to site‐specific analyses in streams and further use of industry‐reported data. Integr Environ Assess Manag 2022;18:361–387. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.