Objective: According to the American Diabetes Association, the implementation of the standards of care for diabetes has been suboptimal in most clinical settings. Diabetes is a disease that had a total estimated cost of $174 billion in 2007 for an estimated diabetes-affected population of 17.5 million in the United States. With the advent of electronic medical records (EMR), tools to analyze data residing in the EMR for healthcare surveillance can help reduce the burdens experienced today. This study was primarily designed to evaluate the efficacy of employing clinical natural language processing to analyze discharge summaries for evidence indicating a presence of diabetes, as well as to assess diabetes protocol compliance and high risk factors.Methods: Three sets of algorithms were developed to analyze discharge summaries for:(1) identification of diabetes, (2) protocol compliance, and (3) identification of high risk factors. The algorithms utilize a common natural language processing framework that extracts relevant discourse evidence from the medical text. Evidence utilized in one or more of the algorithms include assertion of the disease and associated findings in medical text, as well as numerical clinical measurements and prescribed medications. Results:The diabetes classifier was successful at classifying reports for the presence and absence of diabetes. Evaluated against 444 discharge summaries, the classifier's performance included macro and micro F-scores of 0.9698 and 0.9865, respectively. Furthermore, the protocol compliance and high risk factor classifiers showed promising results, with most F-measures exceeding 0.9. Conclusions:The presented approach accurately identified diabetes in medical discharge summaries and showed promise with regards to assessment of protocol compliance and high risk factors. Utilizing free-text analytic techniques on medical text can complement clinical-public health decision support by identifying cases and high risk factors.
Abstract-Episode creation is the task of classifying medical events and related clinical data to high-level concepts, such as diseases. Challenges in episode creation result in part because of data, in the patient record, only implicitly being associated with their respective episodes. Furthermore, traditional approaches have been limited to using feature-poor claims records to generate episodes. The accurate correlation of data to their episodes is valuable in health outcomes research to discern resource utilization with respect to medical conditions. This paper describes a combinatorial optimization approach for constructing episodes, which supports the incorporation of heterogeneous data types. Aspects of this approach include an episode model for characterizing the generation of data elements as a result of a process, a methodology for identifying the relationships between implicit processes and the data elements generated by the processes, a measure for evaluating candidate episode configurations, and an energy-minimization methodology for addressing episode creation. An implementation of this work, called Episode Creation Version 2 (EC2), has been applied on patient records with various episode types, which present with knee pain. EC2 demonstrated data element classification precision and recall scores of 78% and 82%, respectively. Significant improvements in precision and recall were observed over a traditional healthcare services approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.