Recent advances in integrative studies of locomotion have revealed several general principles. Energy storage and exchange mechanisms discovered in walking and running bipeds apply to multilegged locomotion and even to flying and swimming. Nonpropulsive lateral forces can be sizable, but they may benefit stability, maneuverability, or other criteria that become apparent in natural environments. Locomotor control systems combine rapid mechanical preflexes with multimodal sensory feedback and feedforward commands. Muscles have a surprising variety of functions in locomotion, serving as motors, brakes, springs, and struts. Integrative approaches reveal not only how each component within a locomotor system operates but how they function as a collective whole.
The amount of energy used to run a mile is nearly the same whether it is run at top speed or at a leisurely pace (although it is used more rapidly at the higher speed). This puzzling independence of energy cost and speed is found generally among running animals, although, on a per gram basis, cost is much higher for smaller animals. Running involves little work against the environment; work is done by muscles and tendons to lift and accelerate the body and limbs. Some of the work is recovered from muscle-tendon springs without metabolic cost and work rate does not parallel metabolic rate with either speed or size. Regardless of the amount of work muscles do, they must be activated and develop force to support the weight of the body. Load-carrying experiments have shown that the cost of supporting an extra newton of load is the same as the weight-specific cost of running. Size differences in cost are proportional to stride frequency at equivalent speeds, suggesting that the time available for developing force is important in determining cost. We report a simple inverse relationship between the rate of energy used for running and the time the foot applies force to the ground during each stride. These results support the hypothesis that it is primarily the cost of supporting the animal's weight and the time course of generating this force that determines the cost of running.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.