Observations of the Magadi tilapia Alcolapia grahami in hot, highly alkaline Lake Magadi revealed that they air breathe not only during hypoxia, as described previously, but also during normoxia and hyperoxia. Air breathing under these latter conditions occurred within distinct groupings of fish (pods) and involved only a small proportion of the population. Air breathing properties (duration and frequency) were quantified from video footage. Air breathing within the population followed a diel pattern with the maximum extent of pod formation occurring in early afternoon. High levels of reactive oxygen species (ROS) in the water may be an irritant that encourages the air-breathing behaviour. The diel pattern of air breathing in the field and in experiments followed the diel pattern of ROS concentrations in the water which are amongst the highest reported in the literature (maximum daytime values of 2.53 – 8.10 μM H₂O₂). Interlamellar cell masses (ILCM) occurred between the gill lamellae of fish from the lagoon with highest ROS and highest oxygen levels, while fish from a normoxic lagoon with one third the ROS had little or no ILCM. This is the first record of air breathing in a facultative air-breathing fish in hyperoxic conditions and the first record of an ILCM in a cichlid species.
The Magadi tilapia, Alcolapia grahami, a small cichlid fish of Lake Magadi, Kenya lives in one of the most challenging aquatic environments on earth, characterized by very high alkalinity, unusual water chemistry, and extreme O2, ROS, and temperature regimes. In contrast to most fishes which live at temperatures substantially lower than the 36–40 °C of mammals and birds, an isolated population (South West Hot Springs, SWHS) of Magadi tilapia thrives in fast-flowing hotsprings with daytime highs of 43 °C and night-time lows of 32 °C. Another population (Fish Springs Lagoon, FSL) lives in a lagoon with fairly stable daily temperatures (33–36 °C). The upper critical temperatures (Ctmax) of both populations are very high; moreover the SWHS tilapia exhibit the highest Ctmax (45.6 °C) ever recorded for a fish. Routine rates of O2 consumption (MO2) measured on site, together with MO2 and swimming performance at 25, 32, and 39 °C in the laboratory, showed that the SWHS tilapia exhibited the greatest metabolic performance ever recorded in a fish. These rates were in the basal range of a small mammal of comparable size, and were all far higher than in the FSL fish. The SWHS tilapia represents a bellwether organism for global warming.
SUMMARYThe small cichlid fish Alcolapia grahami lives in Lake Magadi, Kenya, one of the most extreme aquatic environments on Earth (pH 10, carbonate alkalinity ~300mequivl −1). The Magadi tilapia is the only 100% ureotelic teleost; it normally excretes no ammonia. This is interpreted as an evolutionary adaptation to overcome the near impossibility of sustaining an NH 3 diffusion gradient across the gills against the high external pH. In standard ammoniotelic teleosts, branchial ammonia excretion is facilitated by Rh glycoproteins, and cortisol plays a role in upregulating these carriers, together with other components of a transport metabolon, so as to actively excrete ammonia during high environmental ammonia (HEA) exposure. In Magadi tilapia, we show that at least three Rh proteins (Rhag, Rhbg and Rhcg2) are expressed at the mRNA level in various tissues, and are recognized in the gills by specific antibodies. During HEA exposure, plasma ammonia levels and urea excretion rates increase markedly, and mRNA expression for the branchial urea transporter mtUT is elevated. Plasma cortisol increases and branchial mRNAs for Rhbg, Rhcg2 and Na Supplementary material available online at
We investigated the transepithelial potential (TEP) and its responses to changes in the external medium in Alcolapia grahami, a small cichlid fish living in Lake Magadi, Kenya. Magadi water is extremely alkaline (pH = 9.92) and otherwise unusual: titratable alkalinity (290 mequiv L(-1), i.e. HCO(3) (-) and CO(3) (2-)) rather than Cl(-) (112 mmol L(-1)) represents the major anion matching Na(+) = 356 mmol L(-1), with very low concentrations of Ca(2+) and Mg(2+) (<1 mmol L(-1)). Immediately after fish capture, TEP was +4 mV (inside positive), but stabilized at +7 mV at 10-30 h post-capture when experiments were performed in Magadi water. Transfer to 250% Magadi water increased the TEP to +9.5 mV, and transfer to fresh water and deionized water decreased the TEP to -13 and -28 mV, respectively, effects which were not due to changes in pH or osmolality. The very negative TEP in deionized water was attenuated in a linear fashion by log elevations in [Ca(2+)]. Extreme cold (1 vs. 28°C) reduced the positive TEP in Magadi water by 60%, suggesting blockade of an electrogenic component, but did not alter the negative TEP in dilute solution. When fish were transferred to 350 mmol L(-1) solutions of NaHCO(3), NaCl, NaNO(3), or choline Cl, only the 350 mmol L(-1) NaHCO(3) solution sustained the TEP unchanged at +7 mV; in all others, the TEP fell. Furthermore, after transfer to 50, 10, and 2% dilutions of 350 mmol L(-1) NaHCO(3), the TEPs remained identical to those in comparable dilutions of Magadi water, whereas this did not occur with comparable dilutions of 350 mmol L(-1) NaCl-i.e. the fish behaves electrically as if living in an NaHCO(3) solution equimolar to Magadi water. We conclude that the TEP is largely a Na(+) diffusion potential attenuated by some permeability to anions. In Magadi water, the net electrochemical forces driving Na(+) inwards (+9.9 mV) and Cl(-) outwards (+3.4 mV) are small relative to the strong gradient driving HCO(3) (-) inwards (-82.7 mV). Estimated permeability ratios are P (Cl)/P (Na) = 0.51-0.68 and [Formula: see text] = 0.10-0.33. The low permeability to HCO(3) (-) is unusual, and reflects a unique adaptation to life in extreme alkalinity. Cl(-) is distributed close to Nernst equilibrium in Magadi water, so there is no need for lower P (Cl). The higher P (Na) likely facilitates Na(+) efflux through the paracellular pathway. The positive electrogenic component is probably due to active HCO(3) (-) excretion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.