The restricted three-body problem with eccentric orbit is reviewed and the positions of the triangular Lagrangian points ( L 4 , L 5 ) are determined. I t is put in evidence the fact that L4 and L5 are situated at the corners of an isoscales triangle:1 -e Z
I n t r o d u c t i o nIn a previous paper (Todoran 1992) we have analysed the effects of the orbital eccentricity on the shape of the equi-potential surfaces in a close binary system. So it was put in evidence the pulsational character and the variable positions of the linear Lagrangian points. In the frame of the same problem in the present note we shall discuss the positions of the triangular Lagrangian points.
2.
E q u a t i o n s of the p r o b l e mLet us consider a non-uniform rotating barycentric coordinate system (X, Y , 2 ) assumed in rotation with the binary system. Here the true anomaly v will be an "angular" function, reckoned from the periastron passage. In such conditions for the double point positions the following equations are established (see Todoran 1992, eqs. (16) - (18)):Equations (1)-(4) are written for a fixed value of the true anomaly v and the following system of units is considered: the semi-major axis ( A = 1) as unit of length, the sum of the masses (rnl + r n 2 = 1) unit of mass, and the reciprocal 1/wk of the mean angular velocity as unit of time. Therefore, we have P = 27r for the orbital period and G = 1. In such conditions we have
The purpose of this scientific-essay is constructionation numerical dynamical task solving algorithm of multilayered discretely substantiated shells, that based on using Richardson finite-difference approximations types. Multilayered discretely substantiated shells refer to complex nonuniformity by thickness elasticity-structures. In one reason, nonuniformity existed because of shell-flakiness structure, in other case-because of existing discretely substantiated edges. Including the discretely count of substantiated elements brings to exist new bursting coefficients on spatial coordinates in output equations. Numerical method usage (finite-dіfference method, finite-elements method etc.) for solving dynamic-progressions tasks in listed structures observing convergence of the worsening numerical results. For the constructing more effective numerical algorithms used the method, which based on finding approximation solutions by Richardson.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.